
NAVAL POSTGRADUATE SCHOOLMonterey, California

00~

I <- II ELECTEB

THESIS
AN EXPERIMENTAL COMPARISON OF CLOS AND C + +

IMPLEMENTATIONS OF AN OBJECT-ORIENTED

GRAPHICAL SIMULATION OF WALKING
ROBOT KINEMATICS

by

Sandra Lynne Davidson

March, 1993

gThesis Advisor: Robert B. McGhee

Approved for public release; distribution is unlimited.

93-16789
IIIHIIIIIIIHI IIII• • S

Unclassified
Security Cassification of this page

REPORT DOCUMENTATION PAGE
Is Report Security Cleasification: Unclassified lb Restrictive Markings

2& Security Classification Authority 3 Distribution/Availability of Report

2b Ded,,ficatio,/Dowgrading Schedule Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(*)

6& Name of Performing Organization 6b Office Symbol 7& Name of Monitoring Organization
Naval Postgraduate School (f qiicabke) Naval Postgraduate School
6c Address (city, ssate, and ZIP code) 7b Addres (city, state, and ZIP code)

Monterey CA 93943-5000 Monterey CA 93943-5000

Be Name of Funding/Sponsoring Organization 6b Office Symbol 9 Procurement Instrument Identification Number

Addresa (day, agate, and Z/P code) 10 Source of Funding Numbers

Program Element No Project No Task No Work Unit Accession No

I I Title (inc,,de secu,*y ciakricaison) AN EXPERIMENTAL COMPARISON OF CLOS AND C + + IMPLEMENTATIONS OF AN
OBJECT-ORIENTED GRAPHICAL SIMULATION OF WALKING ROBOT KINEMATICS

12 Personal Author(s) Davidson, Sandra Lynne

l3a Type of Report 13b Time Covered 14 Date of Report (year, month, day) 15 Page Count
Master's Thesis From To 93 / Mar / 2 147

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

17 Coaati Codes 18 Subject Terms (conuinim on reverse if necesary and identify by block number)

Field Group ISgroup Object-Oriented Programming, Walking Robots, Kinematics, Simulation, CLOS, C+ +

19 Abstract (co•inmue on reverse fneceswary and jidnfyi by block noeber)

The ability to conduct research in the robotic field in new areas can be accomplished safely and efficiently using computer
graphic simulation. Object-oriented languages provide a powerful and flexible capability in defining rigid body manipulators that
can be adapted in the use and design of many types of systems. The very nature of object-oriented programming permits
modification and improvement of the code with ease.

This thesis examines the major capabilities of object-oriented programming in conjunction with kinematic equations that
simulate a six-legged walking robot. A comparison is conducted between programs using CLOS (LISP) and C+ + to graphically
simulate the Aquarobot - an existing underwater walking robot. It is found that both languages are effective, but CLOS
programming is easier while C + + code executes more than twice as fast as compiled CLOS.

20 Distribution/Availability of Abstract 21 Abstract Security Classification
X unclsdmfied/unlimited - smeu report - DTIC users Unclassified

22a Naoe of Responsible Individual 22b Telephone (include Area Code) 22c Office Symbol

Robert B. McGhee (804) 656-2o26 CS/MZ

DD FORM 1473,s4 MAR 83 APR edition may be used until exhausted security clasaification of this 2=ae

All other editions we obsolete Unclassified

- * 1 I I I I lll

Approved for public release; distribution is unlimited.

An Experimental Comparison of CLOS and C + +
Implementations of an Object-Oriented

Graphical Simulation of Walking Robot Kinematics

by

Sandra Lynne Davidson

Lieutenant, United States Navy

B.S., United States Naval Academy, 1986

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUA`IE SCHOOL

March 1993

Author: wUxk
Sandr Lynne Davidson

Approved by: ULA• >
Robert B. McGhee, Thesis Advisor

Michael A. Morgan, llhairman

Department of Electrical and Computer Engineering

S. H

ABSrRACT

The ability to conduct research in the robotic field in new areas can be accomplished safely and

efficiently using computer graphic simulation. Object-oriented languages provide a powerful and

flexible capability in defining rigid body manipulators that can be adapted in the use and design of

many types of systems. The very nature of object-oriented programming permits modification and

improvement of the code with ease.

This thesis examines the major capabilities of object-oriented programming in conjunction with

kinematics equations that simulate a six-legged walking robot. A comparison is conducted between

programs using CLOS (LISP) and C + + to graphically simulate the Aquarobot - an existing

iia•.awater walking robot. It is found that both languages are effective, but CLOS programming is

easier while C + + code executes more than twice as fast as compiled CLOS.

DTIC QUALITY TTC -CT-Ii

Aaoession For

DTIC TAR

Ulharmo',.zjced
Justlflo(tI one

BY
IDist~ri but ioun

Avalability Codes
Avaa•lI ao/or

Dist Spol•al

I.....-"T...I ll I

)

TABLD OF COXTENTS

I. INTRODUCTION 1

A. GOALS . 1

B. ORGANIZATION 1

II. SURVEY OF PREVIOUS WORK 3

A. INTRODUCTION 3

B. HISTORICAL IMITATION OF LIVING CREATURES 3

C. HISTORY OF WALKING ROBOTS 6

D. ADVANTAGES OF LEGGED ROBOTS 8

E. SUMMARY 10

III. AQUAROBOT 12

A. INTRODUCTION 12

B. AQUAROBOT HISTORY 14

C. DESCRIPTION 14

D. CURRENT USE IN JAPAN 18

E. POSSIBLE AQUAROBOT IMPROVEMENTS 18

F. SUMMARY 19

IV. KINEMATICS MODEL 20

A. INTRODUCTION 20

B. LINKAGE AND COMPONENT DESCRIPTION 20

C. KINEMATICS PARAMETER DEFINITIONS 21

D. CRAIG VERSUS DANEVIT-HARTENBERG COMPARISON . . . 22

E. AQUAROBOT KINEMATICS 27

1. Aquarobot Leg Parameters 28

iv

S.. llllJ • i III l i il l l I II i I i ~ li i B n i

I

2. Transformation Matrices 30

F. INVERSE KINEMATICS 33 I
G. SUMMARY 34

V. OBJECT ORIENTED PROGRAMMING 35

A. INTRODUCTION 35

B. CLASS DEFINITION AND CLASS HIERARCHIES 36

C. OBJECT DEFINITION AND OBJECT HIERARCHIES 37

D. INHERITANCE 39

E. CLASS AND OBJECT DIAGRAMS 40

F. CONCLUSIONS ABOUT OBJECT ORIENTED DESIGN 43

G. SUMMARY 44

VI. OBJECT ORIENTED PROGRAMMING LANGUAGES 46

A. INTRODUCTION 46

B. DESCRIPTION OF CLOS 46

1. History 46

2. Benefits in the Kinematics Solution ,.47

C. DESCRIPTION OF C++ 48

1. History 48

2. Benefits in the Kinematics Solution48

D. SMALLTALK AND OBJECT PASCAL DESCRIPTIONS 49

E. SUMMARY 50

VII. AQUAROBOT CODE DESCRIPTION 51

A. INTRODUCTION 51

B. AQUAROBOT CLASS AND OBJECT HIERARCHIES 51

C. AQUAROBOT CLASS DEFINITION CODE 54

1. CLOS Class Description 57

v

VD

2. C++ Class Description 57

D. AQUAROBOT OBJECT INSTANTIATION CODE 60

1. CLOS Object Description 62

2. C++ Object Description 62

E. GRAPHICS 65

1. Graphics Display 65

2. User Interface 69

F. SUMMARY 69

VIII. EVALUATION 71

A. INTRODUCTION 71

B. CLOS/C++ CODE EVALUATION 71

C. CLOS/C++ GRAPHICAL EVALUATION 72

D. SUMMARY 73

IX. CONCLUSIONS 74

A. INTRODUCTION 74

B. FUTURE USE OF CODE IN OTHER ROBOT DESIGNS 74

C. FUTURE USE OF AQUAROBOT 75

D. FUTURE RESEARCH IDEAS 75

E. SUMM4MRY 76

APPENDIX A - CLOS CODE 78

APPENDIX B - C++ CODE 90

APPENDIX C - CLOS SCRIPT AND GRAPHICS 132

LIST OF REFERENCES 134

INITIAL DISTRIBUTION LIST137

vi

L , - . I I I . . . II I " ' 1 I I I II I I I I I I I I

.11
ACKNOWLEDGEMENTS

The writer wishes to recognize the diligent guidance, absolute

attentiveness, and all encompassing support of my advisor,

Professor Robert B. McGhee. Mr. Charles Lombardo's assistance in

debugging code and Professor Sehung Kwak's tutelage in CLOS and

object-oriented programming concepts were vital to this author's

thesis completion. My appreciation also goes to Professor

Kanayama, Kenji Suzuki, and Chuck Schue for their work in the

research group. Professor Williamson also provided valuable

technical advice on C++ issues.

Finally, I am grateful to Eric and Cody for their patience,

understanding, and continuous support during my studies.

This thesis was supported in part by the National Science

Foundation under Grant BCS-9109989.

vii

p

1. INTRODUCTION 0

A. GOALS

The goal of this thesis is to investigate a method for

producing a graphic simulation of a walking robot constructed

from serial manipulators acting as legs. The main intent is

to compare object-oriented code that is based on kinematics

using two programming languages, CLOS and C++. This thesis

discusses and provides examples of steps necessary for the

evolution of a first stage graphic simulator of a walking

robot. The walking robot in question is a six-legged

underwater vehicle, called "Aquarobot", that is presently

under development in Japan for use in subsea construction and

inspection tasks.

B. ORGANIZATION

Chapter II of this thesis reviews previous work in the

area of walking robots. Chapter III provides a detailed

description of Aquarobot, the subject of the simulator

developed in this research. Chapter IV provides an overview

of kinematics modelling of articulated rigid bodies, and

methods used to calculate link parameters for such systems.

The last part of this chapter provides the specific kinematic

parameters for Aquarobot.

i ll I~lliI anill IllI

Chapter V is a review of object-oriented programming and

includes a discussion of its advantages and disadvantages.

Chapter VI contains the history and a description of some

common object-oriented languages. Chapter VII provides a

description of the Aquarobot simulation programs written in

the CLOS and C++ languages. This chapter compares the methods

each language requires to define classes and create objects.

A comparison of the performance of the C++ and CLOS

simulations is provided in Chapter VIII.

The last chapter, Chapter IX, presents some conclusions

about the work described. This is followed by recommendations

for possible future use of Aquarobot, the characteristics of

the two simulations created, and suggestions for further

rasearch.

2

K

II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

Man's need *c comprehend the human body and the phenomena

around him motivates him to imitate it as a tool of

understanding. This chapter provides a historical review of

robotic advancements in living animal imitation. It

specifically addresses the evolution of legged robots. The

differences between legged and wheeled l-comotion are also

discussed.

B. HISTORICAL IMITATION OF LIVING CREATURES

Historically, research has attempted to build machines

that imitate animals. Through technology, it is hoped to

achieve a better understanding of humans and animals and to

accomplish these creature's tas!s with robots. Some such

research is driven by a desire to provide the disabled with

alternative compensation methods, such as artificial limbs,

and other means of achieving increased mobility (McGhee,

1977). Mobility goals for legged vehicles include moving

faster or for extended times, or operating in adverse

environments and conditions such as moving under water, and in

space flight applications.

Biological systems, often taken for granted, are extremely

difficult to emulate or even define. One example, the

3

imitation of a walking gait of an animal, is not easy due to

the difficulty of emulating the nervous system and the natural

materials that form the animal. These unknown variables have

impeded our success in obtaining the coordination algorithms

of even simple animals (McGhee, 1985). A human takes

approximately one year to learn how to walk yet, after decades

of research, walking machines are still considered to be in

the "infant" stage.

Animal limb imitation has been an area of great interest

to researchers interested in advanced mobility systems. If an

application for a walking vehicle is known, there are xany

variables that must be considered to determine an animal to

imitate. As an example, one variable is compliance (Anon,

1987). Compliance is defined as "the act of conforming,

acquiescing, or yielding" (Stein, 1979). As the degree of

compliance of a design is improved, the machine becomes more

challenging to control and keep the limb steady, yet it will

be more robust (e.g., able to withstand impact). If the

degree of compliance in a design is reduced, then the ability

to accurately position the limb will be enhanced, but it will

tend to be rigid and unyielding. On the other hand,

compliance permits flexibility which is beneficial when

performing simple but complex actions such as attempting to

place a bolt on a screw (Anon, 1987).

Limb imitation designs have varied drastically in

appearance. For access to tight spaces, snake-like devices

4

have been constructed. Their applications require that

compliance be limited in order to maintain position. In 0

contrast, a limb similar to an elephant's trunk has been used

as a device to lift objects of varied shapes. This device did

not have an internal support structure. Instead, it copied the I

multiple layers of muscle in an elephant's trunk which

provides motion control. It was extremely compliant in order

to accommodate the varied shapes that grasped objects require I

(Anon, 1987). Human hands have been imitated in numerous

designs. Additionally, legs are very popular in robot

research. 0

Legged locomotion requires a successful leg design.

Through evolution, animals have perfected their individual

legged locomotion characteristics based on their specialized P

needs. Legged animals are capable of high speeds and

intricate motion even when the animal is large and heavy.

Animal legs have been put into two categories: "mammal" and

"insect" types (Iwvsaki, 1987). The "mammal" type has legs

which are always vertical like a horse. The "insect" type has

bent legs like a beetle. A walking capability able to

function in natural terrain requires complicated sensors, a

nervous system, and artificial intelligence (e.g., a reasoning

ability). Since exact imitation of these intricate animal

systems has not, at present, been achieved, legged vehicle

designers must choose other mean.- to solve this coordination

control problem (McGhee, 1985).

S

C. HISTORY G1 WALKIIG ROBOTS

The original legged machines evolved from earth moving and

construction vehicles. These devices are known as "climbing

hoes" (McGhee, 1985). From 1965 to 1968, a four-legged

vehicle, called the "Quadruped Transporter", was constructed

by General Electric. This vehicle incorporated a human

operator in order to provide the sensing and neural control

functions discussed earlier. The operator of this vehicle was

provided with one leg control lever for each limb. These

levers were attached to the arms and legs of the human

operator so that he could control the legs by executing the

desired motions with his own limbs. The front legs were

controlled by the operator's hands and the rear legs were

controlled by the operator's feet. Each control lever had

three degrees of freedom: two at the hip and one at the knee.

This coordination control system required a high level of

operator skill, and only a few mastered its intricacies.

Moreover, these operators could only walk the vehicle for a

short time due to the complicated multi-degree of freedom

coordination problem (McGhee, 1985).

The Quadruped Transporter was designed as a research

vehicle and opened the field of vehicular legged locomotion.

A hydraulic servo system moved the legs. It successfully

walked and displayed impressive obstacle climbing ability.

6

h l t l i i ll lll i i il Il ll l l l ll l l l~ l lI

However, the complexity of the operator motion coordination

task severely limited the device's capabilities (McGhee,

1985).

In 1977, a different control method was incorporated into

another robot called the Ohio State University (OSU) Hexapod

Vehicle. This robot used supervisory control (Ferrell, 1967)

in which the operator controlled speed and direction, and a

computer coordinated the actual leg motion (Pugh, 1982). The

OSU Hexapod Vehicle was a six-legged vehicle with insect type

legs (McGhee, 1985). The device was constructed to study and

develop gait algorithms. Each leg had three degrees of

freedom, each consisting of two links connected by a joint.

Each joint had an electric motor and a worm gear (Waldron,

1989). The operator controlled the vehicle with a remote

joystick in an indoor laboratory setting.

The successor to the OSU Hexapod Vehicle was completed in

1986 at OSU. It was called the "Adaptive Suspension Vehicle"

(ASV) (Waldron, 1986). The ASV was designed for sustained

outdoor locomotion on uneven and unmapped terrain. This six-

legged robot was the first robot to control its legs by an on-

board computer and to carry its own power source in the form

of an internal combustion engine (Waldron, 1986). The ASV,

like the Quadruped Transformer, includes an onboard human

operator. However, the ASV does not require manual

coordination of limb motion by the operator (Waldron, 1986).

In order for the ASV to operate in unstructured terrain, it

7

I I l~ llil I I II I I I I I I II I li

incorporates extensive sensor devices including a laser

terrain scanner to provide a three dimensional terrain

elevation map for a distance of ten meters in front of the

vehicle. This information is used for automatic selection of

footholds in rough terrain (Waldron, 1986).

To date, legged vehicles have had limited application

success. This is due to the complex leg coordination control

problem and a limited understanding of necessary gait

algorithms. Also, this situation exists because of limited

advances in leg design. Future improvements in agility and

speed are anticipated with further progress in understanding

of the difficult problem of microcomputer coordination of

joint motion (McGhee, 1985).

D. ADVANTAGES OF LEGGED ROBOTS

Legged locomotion has existed for hundreds of millions of

years while wheeled locomotion, an invention of man, has been

around for only several thousand years (Waldron, 1989). It is

interesting that evolution has not produced wheeled biological

systems, but then there were no smooth, graded roads before

the introduction of w'eels. Still, given the elegant results

of evolution, one might conclude legged locomotion is

inherently superior to wheeled locomotion, at least in natural

terrain.

Currently, it is possible to go close to most places of

interest on the land surface of the earth by traveling on

II

roads. This has greatly altered our environment. Still, it

takes an off-road wheeled or tracked vehicle to reach the

areas in between, and they leave ugly ruts in the soil. If

the off-road vehicle were to be a legged vehicle, it would

leave only discrete footprints. Furthermore, over half the

Earth's land surface (largely, unpopulated areas) is entirely

inaccessible to wheeled vehicles (Waldron, 1989) but not to

legged vehicles. Legged vehicles have the potential to walk

underwater and in surf as well.

Legged locomotion has an advantage over wheeled locomotion

when soft ground or slippery surfaces are involved. Wheeled

vehicles sink into the ground and must roll out of the

resulting depression by relying on shearing forces resulting

from friction between wheels and the ground. Legs also sink

into the ground but can be lifted vertically (Bekker, 1969) -

a maneuver that doesn't impede locomotion.

While wheeled vehicles have proven themselves efficient

for long-distance transportation, the path must be relatively

smooth and firm. The performance of large mammals shows that

it is possible for legged locomotion to also be efficient for

long-distance transportation. However, actively coordinated

leg motions must be defined by algorithms. These algorithms

are presently in an early stage of development (Waldron,

1989).

Legged vehicles may eventually be able to compete with

wheeled locomotion in all respects except possibly speed.

9

SI II ' " I I ~ li l I I I II I -- • I I I II I I I

However, additional technological advances in theory and

materials will be needed before such machines can reach their

full potential. The advances in computers in the late 1980's

enabled researchers to provide for the leg coordination

computations on board a walking vehicle, but researchers are

moving slowly in their attempts to provide sufficiently

powerful computation algorithms (McGhee, 1985). Over adverse

terrain, legged vehicles have the potential to provide higher

speed, greater mobility, and less environmental damage.

Additionally, legged vehicles can provide more comfort for a

human rider. The rough ride wheeled provided by locomotion

over rough terrain is detrimental to instruments and cargo on

board. In contrast, legged vehicles do not vibrate when

travelling over rough terrain (Waldron, 1989). Finally,

several studies have shown that legged vehicles have the

potential to provide improved fuel economy in comparison with

wheeled vehicles of comparable size (McGhee, 1986).

S. sUNRmaY

This chapter provides a survey of previous work relating

to and walking machines. It specifically discusses the

history of legged vehicle technology and provides walking

machine examples. Legged and wheeled locomotion are compared

and their specific advantages are discussed. The next chapter

10

discusses a walking robot, Aquarobot, that is currently under
development in Japan, and which provides the focus of this

thesis.

h 4

11

III. AQUIROBOT

A. INTRODUCTXON

One of Japan's most important resources is its land.

Unfortunately, Japanese tidal waves (tsunamis), constantly

threaten the Japanese coast and erode productive ground.

Granite rock mound foundations are currently being laid for a

tsunami seawall to be installed in Kamaishi Bay in the

northern part of Honshu. This seawall is designed to

dissipate the energy of a tsunami prior to its arrival at

shore. The Port and Harbour Research Institute (PHRI) of the

Ministry of Transportation in Yokosuka, Japan, wishes to

develop a general method to accomplish deep water structural

inspection of seawalls, including the Kamaishi project. This

method should also provide supervision of construction and

quality control, and should not involve the use of human

divers (Akizono, 1989).

Unfortunately, there is not an "optimal" device to

accomplish the task that PHRI requires. PHRI is currently

using human divers to measure wall and foundation variations.

This is a difficult process due to the pressurization

requirements of the human body and the short time that divers

can be at the bottom (about one hour per day at a depth of

sixty meters). Additionally, the deep sea diver occupation is

12

S- I 111 i ll l • ill I I | I i i i l i i l l I I ,

physically taxing and it is difficult to recruit new

personnel. At this time, most of Japan's deep sea divers are I

in their late 30's or older (Takahashi, 1993). Human divers

are very capable when at the depth of the wall, but are slow

and expensive.

Using a robot is one obvious alternative. There are two

basic options in the design of such a robot. First, a

floating Remotely Operated Vehicle (ROV) could be used.

However, floating vehicles have difficulty maintaining a

stationary position while keeping a specified heading in

water. A floating vehicle has a poor ability to accurately

measure objects since the vehicle is not stable. This would

make a floating robot a poor choice for the PHRI measurement

needs. However, a floating vehicle is an excellent choice for

camera inspection because it can move a TV camera to all

viewing aspects. Unfortunately, if the sea floor is muddy, a

floating robot may make the water murky due to turbulence

induced by its thrusters used for maneuvering (Robison, 1992).

Another robot type available is the walking robot. It

provides stability in a stationary position. It can provide

the measurements PHRI desires. However, there will be

limitations on the camera angles dependent upon the degrees of

freedom of the camera arm and the arm placement. A walking

robot does not muddy the water because it does not stir up a

soft sea floor. Of the two general types of walking robots,

"mammal" and "insect", the insect type provides better

13

movement on uneven terrain (Waldron, 1989). Aquarobot is an

insect type walking robot.

B. AQUAROBOT HISTORY

PHRI bas designed three robots in an attempt to produce

the first practical underwater walking robot. These robots

have been labeled "Aquarobot" by their creator, PHRI (Akizono,

1989). They are all six-legged articulated robots.

The first, an experimental model, was designed in 1985.

It was not watertight and was designed to run ground tests for

basic research and as a software debugger.

The second Aquarobot, the prototype model, was designed

for underwater sea floor applications. The third Aquarobot

was designed as a lightweight design of the prototype model.

It is the second prototype model which has been modeled in

this thesis (Akizono, 1989).

C. DESCRIPTION

The prototype Aquarobot is a walking ROV designed to

follow a path determined from navigation beacons using a gait

algorithm computed by a control station on a barge on the I

surface, and passed to the robot via a tether. It is a six-

legged articulated "insect type" robot equipped with one arm

used to move and aim a video camera (Akizono, 1989).

The aquarobot consists of a hexagonal body and six legs.

The body is constructed of anti-corrosive aluminum. Each leg

14

has three rotary joints that provide three degrees of freedom.

Additionally, each leg has a disc-shaped foot pad that is
I

attached to the leg with a freely rotating ball joint. The

foot pads are not position controlled, but are oriented by a

combination of gravity, the terrain surface, and hydrodynamic

effects acting on the ball joint connection. Figure 2.1

depicts the Aquarobot and its leg structure.

Figure 3.1

Photograph of Aquarobot

Each leg joint of Aquarobot is controlled by the computer

via a DC motor that drives a reduction gear. The reduction

gear consists of a harmonic gear and a pair of beveled gears.

This drive method is known as a semi-direct drive mechanism

(Akizono, 1989). These motors and gears are located within

the legs.

is

II

Each of the eighteen motors are driven by DC power. There

is one motor driver per motor, each located on the barge

controlling Aquarobot. The motor driver sends the motor a

voltage computed from pulse information it receives.

Specifically, the motor driver contains a pulse counter which

counts up for pulses received from the computer and counts

down when pulses are received from encoded motor output

feedback. The motor driver provides the necessary voltage to

the motor to drive the counter toward zero. Thus, the

motor/driver system uses a simple position feedback method.

(Akizono, 1989)

There are two inclinometers and one gyrocompass (Anon,

1992) on the body of Aquarobot. Each foot has a pressure

sensitive touch sensor. These sensors provide foot contact

and body orientation information to the computer (Akizono,

1989). To measure the absolute elevation of selected points

on a rock mound foundation, one leg of Aquarobot is also

furnished with an accurate depth cell located just above the

foot (Takahashi, 1993).

The computer system, located on the barge, provides

walking algorithms and operating programs. It is a 16-bit

controller. The interface is provided by two integrated

circuit boards: an input/output board and an A/D converter

board. The input/output board sends pulses to the motor

driver and receives touch sensor status and joint rotation

pulses from the legs. The A/D converter receives the

16

• " I I IIII I I m I lal I I i lli In i n l I in n

I

gyrocompass, depth cell, and inclination sensor feedback.

Individual leg motions thus are performed using hardware
I

controls, while top level motion control and path planning is

controlled by software. (Akizono, 1989)

The information bus has changed throughout Aquarobot's

evolution. The tether for the experimental model consisted of

copper wire. The two later models have optical fiber links

with optical/electric converters in the body and control unit.

However, all models contain eighteen copper wires to carry

current to individual motors, resulting in a rather large

cable cross section (four centimeters). (Iwasaki, 1987)

The computer software is currently written in BASIC. The

operating program receives the walking commands from the gait

algorithm and simultaneously translates them to the motor

drivers in pulse form.

The prototype model's video camera arm has three rotary

joints. Cameras may also have independent pan and tilt

control. The arm is also equipped with an ultrasonic ranging

device. Using this device, scales can be projected on the

camera screen so that measurements of an object can be

interpreted in conjunction with its range from Aquarobot to

determine actual dimensions.

The prototype model also has a relative navigation

capability which uses a transponder system. This system

17

!• iH lm mmnllninl []n nlllnl 1e

'7 i • in in n~i en e i i D~lg R i

measures its position in cartesian coordinates, based upon

triangulation of signals received from beacons placed in the S

vicinity of Aquarobot at known locations. (Akizono, 1989)

D. CURRENT USE IN JAPAN

The prototype Aquarobot has successfully walked

underwater. It's current maximum walking speed on uneven sea

bed is approximately one meter per minute. While this speed

is judged to be acceptable, Aquarobot has not been put to

practical use because human divers are still able to perform

its function at a lower cost. (Takahashi, 1993)

E. POSSIBLE AQUAROBOT IMPROVEMENTS

Aquarobot could be improved in many ways. The physical

characteristics of the tether and the resultant effects of

currents on it is an area where substantial improvements are

possible. The tether could be decreased from its currently

large circumference and bulky appearance. This could be done

by improving the motor controllers and placing them in the

vehicle. In this way, the eighteen wires in the cable

carrying motor currents could be replaced by a single two

conductor power cable. Additionally, the computer software

could be optimized to provide faster and more flexible code.

New technology in integrated circuits should be incorporated

to generally decrease component size and power requirements.

18

S. J i i I

F. SUM3URY

Aquarobot represents a major advancement in the field of

walking robots. Aqu&robot's design was influenced by the

mission it was to accomplish. This is not often the case in

robot design. Usually, a robot is designed from a research

standpoint and then may be used in a "real life" application.

When an application is driving the technology, robotics

advancement looks at the problem from a new perspective and

new and varied designs can be anticipated. The algorithms

required to calculate the leg and body positions of Aquarobot

are described in the next chapter of this thesis.

1,

IV. KINEMATICS MODEL

A. INTRODUCTION

Robots typically consist of one or more "limbs" which are

technically defined as mechanical manipulators. These

manipulators provide the robot with the capability to grasp,

walk, or perform some other task. To control the robot

appendages with commands to move to a desired location,

knowledge from the field of physics and engineering that

describes motion of rigid bodies is needed. This field is

known as k. Kinematics is "... the science of motion

which treats motion without regard to the forces which cause

it" (Craig, 1989, p.6). Kinematics allow all geometric

properties of the motion to be defined.

Forward kinematics computes the Cartesian space position

and orientation of the manipulator links from a set of

parameters which describe the manipulator using angles and

lengths. The orientation is often described as azimuth, roll,

and elevation. Inverse kinematics solves for the manipulator

parameters when the Cartesian space and orientation are known.

B. LINKAGE AND COMPONENT DESCRIPTION

Manipulators consist of nearly rigid links which are

connected at joints. There are two simple types of joints:

sliding (prismatic) and rotary. The joints are designated by

20

number beginning from the base, usually labeled joint 0

(Craig, 1989). The base is also sometimes considered to be the

most inboard link. The free end of the links is the most

outboard link and is often called the end-effector. It is at

the end-effector that the robot's work is performed. Often the

end-effector is a grasping device or a foot pad.

Kinematics considers each link to be a purely rigid body

(Craig, 1989). In reality, description of a manipulator's

links requires many variables to be considered during the

design process. Some variables include the material used for

construction, the link strength, stiffness, length, and the

manipulator weight.

Kinematic algorithms are designed to define the position

and orientation of all manipulators regardless of their

geometric complexity. This is accomplished by carefully

defining joint coordinate axes called frames and arranging

their alignments using standard parameters that describe the

adjacent link relationships (Craig, 1989).

C. KINEMATICS PARAMETER DEFINITIONS

A frame is attached to each joint with the Z-axis

coincident with the joint motion axis. The X-axis of the

frame is directed from a link's inboard joint towards its

outboard joint to intersect that joint's axis, and is mutually

perpendicular to both Z-axes.

21

h nm II II I I il I I I I I II I I I I II I

Four parameters are needed in the kinematic algorithms.

The first, link jenJgh, is the distance along the X-axis

between the joints of a given link. The second is link twist.

This is the angle necessary to rotate the inboard Z-axis to be

parallel to the outboard Z-axis.

The third parameter is link offset. It is the distance

measured at the inboard link axis from the preceding link X-

axis to the current X-axis. The final parameter is the

rotation at this joint from the previous link X-axis to the

current link X-axis. This is known as the Joint angle.

D. CRAIG VERSUS DANEVIT-HARTEMBERG METHOD COMPARISON

Forward kinematics determines the cumulative effect of

joint motions on the entire link chain. This cumulative

effect can be accomplished by a number of methods. Two common

methods, Craig and Danevit-Hartenberg, are related in their

approach but differ in their setup (Spong, 1989).

To begin with, the manipulator must be inspected. The

frames must be placed with the proper orientation. The four

parameters discussed above must then be determined. These

parameters are identical for both methods; however, the

numbering of the joint frames varies.

The Craig method numbers the links beginning with zero at

the most inboard link. The base joint is numbered joint 0.

This produces a numbering system where the link and the link's

inboard joint have the same index number (Craig, 1989). An

22

example of this notation is pictured in Figure 4.1. The base

(joint 0) inboard link length and inboard link twist are both

defined as zero.

joint i joint i+1tI

L. -

asa,

Figure 4.1

Craig Method Frame and Parameter Assignment

23

ZL4

The Danevit-Hartenberg (DH) notation differs from the

other method. In this method, the first link, attached to the

base joint, is labeled link 1. The base joint is labeled

joint 0. This produces a numbering system along the link

chain in which the link and the link's outboard joint have the

same index number (Spong, 1989). An example of this method is

pictured in Figure 4.2.

Joint i Z1.1

CLI-1I

Joint i-I

d '-LLink i

.%7

Figure 4.2

Danevit-Hartenberg Frame and Parameter Assignment

24

IIII i

i

LI

These methods use related conventions for manipulating

these parameters; however, the algorithms are different. The

cumulative effect of the links are defined within a matrix

known as the transformation matrix (Craig, 1989). The

transformation matrix differs for the two methods addressed.

The Craig method uses a transformation matrix (known as

the T matrix) to define the outboard joint location on a link

relative to the inboard joint. The T matrix is defined as 0

(Craig, 1989, p.84):

I
A0 _90 0 a

T = ac~~1 , ~ ~ ~I1 ~(4.1)

0 0 0 1

there c = cos (4.2)
1 = sin (4.3)

25

• - I m -

The subscript of the T matrix label describes which joint is 4
being defined. The superscript of the T matrix describes the

link to which the matrix is referenced.

The Danevit-Hartenberg method uses a transformation matrix

(known as the A matrix) to define the location of the inboard

joint on a link relative to the outboard joint. That is, the

coordinate origin for a link is located at its outboard joint

for the DH method, while it is at the inboard joint in the

Craig method. The A matrix is defined as (Spong, 1989,

p.66):

I-1so colcx (44),gK, e

iA 0 0 qIcvýd

0 0 0 1

26

01I

The subscript and superscript of the A matrix are defined the

same as the T matrix above. However, by convention, the index

is transposed.

These transformation matrices provide information on the

rotation and translation needed to superimpose the frame being

transformed to the relative frame. The rotation information

is the top left 3 x 3 sub matrix in the transformation matrix.

The translation information is in the right column in the

first three rows.

The base joint is aligned with the coordinates that the

designer would like to use to reference the link positions.

Usually, for fixed base manipulators, the base joint axis is

aligned with the Earth's coordinates. To transform the joint

in question, the transformation matrices need to be multiplied 0

together (Craig, 1989). For example:

4T = I• * 2
1T * 3

2T * 43T (4.5)

4A = 0
1A * 1

2A * 2
3A * 3A (4.6)

E. AQUAROBOT KINEMATICS

Aquarobot's six legs are identical manipulators except for

their angle off of the body's forward axis. In order to

simplify the leg parameters of the first link, an imaginary

link was constructed from the body's center to the point where

the leg joins the body. This makes the body's center the base

joint. The Craig method will be used in this thesis to solve

the kinematic equations for Aquarobot's legs.

27

1. Aquarobot Leg Parameters

Common symbols exist for the parameters. They are:

link length (a,), link twist (ai), link offset (di), and joint

angle (0i). Figure 4.3 shows one Aquarobot leg with the

imaginary leg link included.

OT 0

28

X6l

.I

Figure 4.4

Top View of Aquarobot Showing First Two Angles

and Axes for Leg Six

The parameters for Aquarobot's legs are shown in Table

4.1 helow. Note that the joint angle of the base (i = 0) is

the only fixed parameter that varies among the legs. The joint

angle range for the other joints common to all legs are given.

These limits are the physical joint ranges. Joint four does

not have a frame designated because it is a passive ball

joint.

29

TABLE 4.1.

AQUAROBOT KINEMATICS PARAMETERS

inboar.d out:board
1inkC bonr8d oXtboazd Lnk

*o:nt twl-t iLnk LInk jOit
n as angle leanat of f.ot angleI ct,,.4 Ad-& d6 6, zftr:.•O .O& ..Ia

0 0.0 0.0 0.0 0. 0, -0,60,120,180,
240,300

1 0.0 37.5 0.0 6. -60 -4- OL -C- 90

2 -90.0 20.0 0.0 0, -106.6a 0. -73.4

3 0.0 50.0 0.0 on -16.4 2%.6

0.0 100.0 0.0 0, -45-c 0. c45

2. Transformation Matrices

The transformation matrices of the Aquarobot legs were

constructed using Table 4.1 above. The Craig method

transformation matrix template was used. The computed link

transformations are thus:

r7, -doe. 0 0

m,= O, 0 0o (4.7)
0 0 0 2. 0O

0 0 0 1

-4-8, 0 37.5

0 ig o 0 (4.8)
3L 0 0 1. 0

0 0 0

30

I

U

C29, --does 0 2 0

" T 0 0 1 0 (4.9)
2 --ueu -ce, 0 0

0 0 0 1
S0 0

ole, -me, 0 so0

,. T2 0 0 (4.10)
3 0 0 1. 0

0 0 0 1

CS, -Me, 0 1.00

3 T e. (4.11) 0
0 0 1. 0

0 0 0 1

0t

Multiplying the T matrices together provides the joint

coordinates in reference to the body's center. These

Cartesian coordinates are found in the third column of the

product of the T matrix multiplication.

The T matrix product of each joint is called the

Homogeneous Transformation matrix (i.e., H matrix). To

determine the next outboard joint's orientation based upon the

reference frame, the H matrix of the current (relatively

inboard) joint is multiplied by the outboard joint's T matrix.

The joint's H matrix provides the orientation from the

reference frame outboard to that joint.

31

The 1! matrix for the body provides orientation of the

body frame (and, in turn, its outboard joints) to the fixed

reference frame which is usually a designated point on Earth.

The initial orientation information required is azimuth,

elevation, roll, and translation from the reference's origin.

Elevation is defined as rotation of the body X-axis above or

below the horizontal plane. Azimuth is the rotation of this

axis away from north about a downward directed axis. Roll is

rotation about the body X-axis after azimuth and elevation

rotations have been accomplished. The H matrix is defined as

(Craig, 1989, p. 46):

c(a)c(e)a c(a) a (e)s (r)-a (a)c(r) c(a)s(e)c(r)+s(a)a(r) X

H =(a)c(e) a(a)s(e)s(r)+c(a)c(r) a (a) s (e) c (r) -c (a) s (r) y' (4.12)
-s(e) c(e)s(r) c(e)c(r) z

0 0 0 1

where a = azimuth e = elevation r = roll

When the body moves, its H matrix relates its body

coordinate system to the world coordinate system. The

cumulative effect of the body's motion is transferred to the

individual links via the H-matrix and continues to be

transferred outboard in this manner.

32

4 F. INVERSE KINEXATICS

Inverse Kinematics provides the parameter values needed to

move the joints to a desired position. The transformation

matrix products above are equated to the generic

transformation matrix to make a set of nonlinear equations

(Craig, 1989, p. 123).

T [R [[iT]

r•r, r. x

r2. r22 r23 y

r3 r2 r33 z (4.13)

0 0 0 1

These equations are solved simultaneously for the unknown

parameters (joint rotation in the case of Aquarobot). The

inverse kinematics of Aquarobot are solved in another thesis

(Schue, 1993). There are occasions when two solutions for a

parameter are possible (Craig, 1989).

33

0. SUMMARY

Aquarobot's design uses rotating joints. Rotating joints

have an advantage over sliding joints in that they generally

provide increased dexterity. Additionally, such joints can

usually be made smaller than sliding links (Spong, 1989).

They are also easier to waterproof for an underwater walking

robot.

Kinematics analysis permits Aquarobot's foot positions to

be easily determined using successive transformations.

Kinematics equations can be manipulated quickly using

computers. Object oriented programming simplifies the

numerous transformations necessary for an intricate multi-link

system. Object oriented programming is discussed in the next

chapter.

34

V. OBJECT ORIENTED PROGRAMMING

A. INTRODUCTION

Object Oriented Programming emphasizes the subjects which

operations act upon in contrast to the traditional programming

method of emphasizing the algorithms and the order necessary

to execute them (Booch 1991). The Object Oriented (00)

designer constructs his modules of code based on items (known

as objects). These objects need not in every case accomplish

anything significant, but they do at a minimum provide

encapsulated data. Other designers construct their modules

based upon the data and algorithms that are associated with

such blocks.

00 code permits the designer to produce elementary

components and then link these objects together to produce a

complex system. This parallels the thought process that

humans use to think of objects around them.

00 code provides two structures, object and class.

Classes are the blueprints of a component and exist in a "kind

of" hierarchy. Objects are the actual produced copy of the

object (instances of classes) and may exist in a "part of"

hierarchy in relation to other objects.

35

B. CLASS DEFINITION AND CLASS HIERARCHIES

Classes are the building blocks or key designs of a

system. They are synonymous with a factory's product

blueprints. Classes provide the ability to make many modules

(objects) that are designed identically. Each object, when

made, provides the "essence" of the class (Fink, 1992).

Classes are static, and the information, known as fields, of

the class are fixed. The class definition provides a template

for the production of objects.

A class can inherit from one or more superclasses. The

inheriting class is known as a subclass. A class can also have

subclasses which consists of it and additional information.

Each senior, top level module, represents one of the most

general designs in a system.

Class structures may include object fields, also known as

slots, from multiple superclasses with subclasses created

using some priority scheme or other means to resolve conflicts

(Booch, 1991). These class frameworks are transferred to the

objects thit are produced.

Multiple class structures form a design. Seldom does one

class concisely define a system. The class hierarchy permits

all nuances desired, regardless of significance, to be defined

as the designer chooses at that level.

The classes designed to serve as templates are defined as

concrete classes. They are expected to have objects

instantiated from them (de Paula and Nelson, 1991).

36

Not all classes are designed as templates for actual

object instantiation. These are called abstract classes.

They are higher level classes which hold knowledge that all of

their subclasses have in common. Abstract classes reduce

duplication of common knowledge (Wu, 1991). They are written

so that multiple subclasses can inherit from them.

A class capability provides two of the three features

necessary for 00 programming. First, it provides for a design

to be defined in a generic format. Second, it allows the

designs to be modularized at the most general level, yet still

provides for a relationship framework where additional design

features can be added in subclasses (Booch, 1991).

C. OBJECT DEFINITION AND OBJECT HIERARCHIES

Objects are the useable products of OOP and provide the

third capability needed for utilization of this technology.

They are concrete software entities that can be manipulated.

An object has all of the properties of its class. All objects

produced from the same class contain identical fields and

functions, yet it is important to understand that each object

has its own identity and its own name when produced. It is by

this name that the object is addressed within the code. The

objects are facsimiles of the class and its behavior and

fields. However, they may be elaborated individually (Eckel,

1989).

37

IL

II

An object is constructed by creating an instance of the

class desired. All superclasses and their defined functions,

also known as methods, are available to the object. It is not

necessary to have an object for every class. A class may have

zero, one, or multiple instances of itself (de Paula and

Nelson, 1991).

An instance of an object may be produced by two different

schemes. First, an object may be instantiated within the main

program. This object may subsequently be addressed by its

created name. Such an object is a top level object within the

software. It may also be considered a subobject if it is

used as part of a larger composite object. The second type of

object, a dependent object, is instantiated directly and

automatically as a part of another object. The dependent

object is considered a component of the object it is

instantiated within and has no independent name. A dependent

object is instantiated during construction of the main object

and is destroyed when the main object is destroyed. For

example, a sports car, when produced, can be thought of as an

object and its components, such as the doors, can be

considered dependent objects since they are made during the

sports car's construction and are legally part of the vehicle.

Objects, when instantiated, acquire all of the fields of

the class, but the values of these characteristics may be

initialized individually during the construction of the

individual objects. For example, this permits numerous

38

objects of the same class to be instantiated yet have

different measurements or characteristics.

An object may change its slot values during its existence.

This provides an object with a history. An object may be

created and destroyed. The object's functions can not be

violated. Objects perform functions by sending requests.

These functions are designed within the class structure and

are applicable to the objects instantiated from the specific

class or its class hierarchy. This capability to perform

functions enables an object to be much more than a data

structure.

Functions, history, and "lifetime" characteristics provide

objects with state, behavior, and identity (Booch, 1991).

This parallels their real-world counterparts.

D. INHERITANCE

Inheritance is defined as a "... mechanism for resource

sharing in hierarchies" (Wegner, 1987, p. 169). It is a

unique contribution of 00 languages. Inheritance provides an

easy way to create objects that are very similar, although

individual instances may have some differences (Stefik, 1986).

The subclass is a specialization that augments or alters the

structure and behavior of the inherited class. It inherits all

functions and methods defined for its superclasses. This

includes all attributes that the superclass inherited form its

superclass (Wegner, 1987). A subclass may have fields or

39

methods which modify, elaborate, or add to those inherited by

its superclass (Booch 1991).

When a subclass has one superclass, this is called single

inheritance. Two or more superclasses defines multiple

inheritance. Inheritance is a class relationship rather than

an object relationship.

B. CLASS ?-ND OBJECT DIAGRAMS

Class and object diagrams provide a logical view of a

system. The difference between object and class diagrams is

an important concept in 00 design.

Class diagrams are built on interclass relationships

involving inheritance. Superclasses and subclasses describe

these diagrams. Class utilities provide a special

relationship within the class diagram. A class utility is an

abstract class type which provides functions that do not

belong to one particular class but are accessible to all.

Figure 5.1 displays an example of a representative class

diagram. Note that there is only one of each class in the

class diagram.

Figure 5.1 displays an automobile class diagram. The top

level module, the automobile class, is the superclass. In

this class structure, subclasses are necessary. Two subclass

levels are necessary in order to reach a concrete class. The

Porsche can be produced but a sports car is an abstract class

that can not be instantiated.

40

S UlIIIIIIIIIII IIII

4

AUTONOBILE

*lots$a
.aaufaat-z.ret

JZP STATION S PORTS

rellbn" @loutm

haft 11"tolow"V

KEY:

CONCRETE
0 CLASS

CLASS

SUPERCLASS SUBCLASS

Figure 5.1

Example Class Diagram

Object diagrams "... show the existence of objects and

their relationship in the logical design of the system ... "

(Booch, 1991, p. 169). An object diagram shows the

41

,,

relationship between objects and presents each object as "part

of" the total system. Figure 5.2 is an example of an

automotive system via its object diagram.

In Figure 5.2, a Porsche is instantiated as the object

desired. In order to create a Porsche, however, many

subsystems (dependent objects) are needed. A few example

dependent objects are displayed.

Gb

Figure 5.2

Example Object Diagram

42

A omiposite object is defined as an object linked to

other objects by part-of relationships. Parts of the

composite objects may be subobjects or dependent objects.

F. CONCLUSIONS ABOUT OBJECT ORIENTED DESIGN

00 Programming allows designers to begin with a simple or

general system. This principle of beginning with a large,

less specific class or object is similar to human perception.

First, humans detarmine what the overall item in questions is.

For example, a person may look at a car. He or she is likely

to note the model of the car at that time. Then, smaller

"part of" subsystems of the car or specific slot values may be

inspected. For example, the year the car was produced or the

air conditioning system may be looked into. 00 code permits

the programmer to define subclasses or components when they

are needed or as the system is elaborated upon. This allows

the programming to be accomplished in small increments. 00

designs allow attention to be focused on the appearance and

external capabilities of objects instead of on software

implementation details. This prevents too much information

from "cluttering" the user's view (Snyder, 1986). Another

advantage to 00 Programming is the capability to improve or

alter class slots as the system changes or as corrections are

needed. This resilience and the capability to reuse small

subsystems in multiple objects makes 00 code economical (Booch

1991).

43

SIII II I I II I IIII iI

00 Programming encourages reuse of entire software class

hierarchies. The modular design of 00 code permits new users

to incorporate existing code without having to retest 4

functions or redesign code. This extendibility of code life

reduces a designers programming time. The modular design of

class code permits the user to use the functions of the class

without requiring an intimate detailed knowledge of the

function's inner workings.

A disadvantage of 00 Programming is that classes may be

designed without placing functions in the most general

superclass. This causes identical functions to be defined in

numerous subclasses and increases complexity. Repetition

should be minimized by placing common functions of two or more

classes in a superclass. Of course this can be an iterative 4

process with common properties or methods being factored out

and moved upward in a class hierarchy as they are noted.

G. SUMMARY

Human capacity is limited in its capability to grasp

complex systems. 00 code enables a person to look at a complex

system as a collection of various subsystems. It also

provides the capability to only look at areas of interest

within an object/class.

44

Siii []

Object Oriented programming provides software that is

"malleable". This is directly due to class structure and

inheritance, a unique characteristic of this code (Booch,

1991).

The difference between the class and object structures is

a subtle but important one. An object is an instance of a

class and the object may be created and destroyed within a

program. A class is designed but it is static when a program

is executed (Booch, 1991).

The long life span, maintainability, and flexibility in

application of Object Oriented code makes it the premiere

choice when a design with multiple subsystems is desired. The

greatest hindrance of Object-Oriented Programming's potential

to be the popular choice in industrial design is its current

lack of widely excepted standards. However, there seems to be

considerable consensus on OOP's primary concepts. The next

chapter describes 00 languages suitable for development of an

Aquarobot kinematic simulation.

45

S-I ull iimililllim li I "

VI. OBJECT ORIENTED PROGRAMUING LANGUAGES

A. INTRODUCTION

Not all computer language.; are able to support OOP. Four

predominant languages with 00 capability are CLOS, C++, Object

Pascal, and Smalltalk. Aquarobot is designed using CLOS and

C++. Aquarobot's class and object hierarchies are described

and then created with CLOS and C++ code.

B. DESCRIPTION OF CLOS

1. History

LISP evolved in the late 1950's and was named for its

performance method: List Processing (Winston, 1989). The

fundamental element in LISP is a wordlike object known as an

atom. A group of atoms (similar to a sentence of words) is

known as a list (Winston, 1989). It is these lists which LISP

is designed to manipulate. LISP allows for lists to be added

to or deleted from indefinitely. Specific atoms may be

extracted or manipulated using LISP created or library

functions.

Common LISP was officially designed in 1984 to

accumulate the existing LISP variations into one standard

version. This standardization was advantageous for academic

and industrial use (Steele, 1990). Common LISP was then

46

I IIII IIIIIII IIII III

extended to provide 00 capability and this extension is known

as CLOS (common LISP Qbject System) (Steele,1990).

CLOS (pronounced see-loss) permits each class to have

local and shared slots. These slots can be directly accessed

and modified by the programmer (Winston, 1989). CLOS provides

for multiple inheritance within the class hierarchy.

Conflicts in multiple slot inheritance is avoided due to

conflict precedences which define the first superclass listed

as superior (Fink, 1992).

2. Benefits in the Kinematics Soluti.,.

CLOS (and therefore LISP) has many advantages in the

robot kinematics solution. CLOS operates in an interpretive

environment that facilitates interactive programming,

providing information such as variable status, with rapid

response (Winston, 1989). This capability for immediate

answers to a drafter's questions provides ease in debugging

as well as the drafting of programs (Winston, 1989). Lists

are addressed and manipulated using programmer defined

symbolic names which generally tend to decrease the code

length and improve readability (Keene, 1989).

The symbol manipulation and interactive capability of

CLOS simplify the kinematics solution. Each limb's joints can

be placed in one list or each parameter can be designed as an

atom in a joint list. CLOS code provides compact code Lor

extensive systems as well as functions that are easy to read.

47

More generally, academic institutions and industries can

create complex systems with big programs that run faster and

are less expensive due to the compact code (Winston, 1989).

CLOS also incorporates the natural language

orientation of LISP. Class and object structures and their

slots and values are easily understood (Keene, 1989).

C. DBSCRIPTION OF C++

1. Nistory

C++ was designed in 1986 at AT&T Bell Laboratories by

Bjarne Stroustrup, and is a superset of the C language (Booch,

1991). C++ incorporates the programming abilities of C and

adds 00 properties as well as type checking and operator

overload functions. In 1989, C++ Version 2.0 provided

multiple inheritance (Stroustrup, 1991).

2. Benefits in the Kinexatics Solution

C++ is similar in format to many presently popular

languages such as Ada and C. The familiar format is an

advantage of C++ when an OOP language is necessary.

Conversely, LISP has a unique format that is not currently

a popular choice in academic institutions or industry. This

uniqueness is a disadvantage to CLOS unless the drafter

understands LISP.

C++ permits users to apply functions without

necessitating intimate detailed knowledge of the class inner

workings (Booch, 1991). C++ uses a header file to provide a

48

10 iiIIIIII II III

top level view of class structure and the functions which

apply (Booch, 1991). Functions must be defined for a specific

class within its hierarchy because of C++'s strong typing.

Subclasses may alter functions that their superclass defines.

Common operators such as addition (+) and equality (=) are

generically defined for common classes (e.g., integer, double,

array, etc.), but they must be redefined in new classes where

their use is desired (e.g., a matrix class or link chain)

(Ammeraal, 1991).

D. SMALLTILK AND OBJECT PASCAL DESCRIPTIONS

Smalltalk and Object Pascal are also 00 languages. Like

C++ and CLOS, Object Pascal provides an enhancement of the

Pascal language. Object Pascal was specifically designed to

add an 00 capability to Pascal. However, Object Pascal is

more restrictive than C++ in code development (Booch, 1991).

All class slots are public so slots may be changed while

performing another class function (Booch, 1991).

Smalltalk was designed as a pure 00 language and provides

many predefined classes. Unlike object Pascal, all slots in

Smalltalk are private. Object Pascal is unique in that it

provides an overall system template and all created classes

are considered subclasses of a predefined superclass called

"Object" (Booch, 1991). Smalltalk is not a strongly typed

system, therefore a compiler cannot optimize the code.

Smalltalk is limited to single inheritance (Booch, 1991).

49

u. SUMMARY

00 capability is presently a popular (and seemingly

necessary) addition to current programming languages. This

development coincides with the increased use of 00 in academic

and industrial system design.

CLOS provides an easier format for user's to read than

C++. However, C++ provides non-list manipulations which are

often more efficient. Both languages require knowledge of the

original language they embellished or a similarly formatted

language. CLOS requires less code space than C++, but C++

usually executes more efficiently, and may require less

memory.

CLOS provides dynamic memory allocation and uses "garbage

collection" to accumulate unused memory space. Activity is

suspended during garbage collection which may hinder real time

calculations in some garbage collection methods. In contrast,

C++ uses a memory heap which requires that memory be removed

and then explicitly returned to the heap when the memory space

is no longer needed. The next chapter provides a description

of CLOS and C++ and examples of their formats in the context

of the Aquarobot code developed in this thesis.

50

IL II~ i . . I - I l l .. n l lli I

VII. AQUAROBOT CODE DESCRIPTION

A. INTRODUCTION

In order to produce an Aquarobot simulation, each of the

robot's major parts needed to be simulated. OOP was chosen as

the best method to achieve this goal. One version of

Aquarobot was written in CLOS by Prof. Robert McGhee at the

Naval Postgraduate School. The other version was written in

C++ by this author. In this chapter of this thesis, the

object and class diagrams for these two inplementations are

presented along with examples of the method each language uses

to produce an individual class and instantiate an object. The

C++ graphics code is discussed and examples of the display are

included. The complete CLOS and C++ Aquarobot programs are

found in Appendix A and B respectively.

B. AQUAROBOT CLASS AND OBJECT HIERARCHIES

The class hierarchies designed to produce an Aquarobot in

CLOS and C++ are shown in Figures 7.1 and 7.2 respectively.

These two figures are not identical, but there are major

portions that are similar.

The RigidBody class is a superclass of the system. Its

subclasses are the major pieces with which Aquarobot and its

components are created. The AquaLeg class uses the Link

51

in i

--M

Figure 7. 1

CLOS Aquarobot Class Diagram

52

O~UC? uarot-boe 3r

C++ quaobotClas Dagrtat

53~cmt~ UCU

subclasses (linko through link3) and a few numerical slots to

create another top level class. The AquaLeg class also

possesses functions that manipulate an AquaLeg type. The

Matrix class is unique to the C++ version. The CLOS version

uses lists to store data while the C++ version uses this

defined Matrix class and its functions to store and manipulate

the data. The Matrix class is a typical example of a class

utility.

The object hierarchy used to instantiate an Aquarobot

differs in the two versions. Figure 7.3, the C++ object

diagram, constructs Aquarobot as seven subobjects which can be

deleted or reproduced without affecting the existence of the

other. Figure 7.4 displays the CLOS object diagram that has

one top level object with dependent object hierarchy

containing a total of thirty-one objects. The Leg object and

its dependent subobjects are identical in each language

version.

C. AQUAROBOT CLASS DEFINITION CODE

Classes are defined in various ways dependent upon the 00

language used. There are, however, many similarities in class

attributes. For example, both CLOS and C++ have slots for the

items within a class. The AquaLeg class definition in both

language versions is explained in the following paragraphs.

54

LEGi LEG2 LEG3

AquaLeg AquaLeg AquaLeg

EIZ nkO 3 ~

LEG4 LEG5 LEG6

AquaLeg AquaLeg AquaLeg

L~~~nkOk J~zE i

TAk Lir nk3 IL~i]k_

0j m* abject 0J &v~ object

Figure 7. 3

C++ Object Hierarchy

55

AQUA-i
I aquarobot

LIAM

I Iw 7

I LE31 LEGS LEG3

aqua-leg aqua-leg aqua-leg

U~~ id
'LLii

0 0 Lo.J-
Fiur 7.

IO ObetHirrh

1. CLOD Class Description

CLOS provides a template that contains both optional

and mandatory information requirements. This template can

be found in CLOS manuals. Figure 7.5 is the aqua-leg class

defined using CLOS. Eight slots are defined and then

initialized using the :initarg or iinitform command. The

dependent objects shown in Figure 7.4 are instantiated

within the aqua-leg class as linkO through link3 using the

make-instance command. The linkO class, for example,

incorporates the superclass slots of Link.

The functions related to the aqua-leg class are

defined outside of the class definition in defmethods.

"Initialize-leg" is a function which requires an "aqua-leg"

and an "aquarobot-body" class as input. Each input is given

a local variable name of "leg" and "body" respectively. The

functions may call other functions or change slot values.

The CLOS code includes a camera class because the code was

developed on a Sun workstation while the C++ version uses

the graphics library on a Iris workstation.

2. C++ Class DESCRIPTION

The C++ AquaLeg class is defined within the AquaLeg.H

file (Figure 7.6). Like the CLOS version in Figure 7.5, there

are four dependent objects that are slots of the AquaLeg

class. Like the CLOS version, functions which are applicable

57

| , - III II I III III III III I I I I II - " I I l l I li l

(defclass aqua-leg (
((leg-attachment-angle

:initarg :leg-attachment-angle
:accessor leg-attachment-angle)

(linkO
:initform (make-instance 'linkO)
:accessor linkO)
(linki
:initform (make-instance 'linki)
:accessor linki)

(link2
:initform (make-instance 'link2)
:accessor link2)
(link3
:initform (make-instance 'link3)
:accessor link3)

(motion-complete-flag
:initform nil
:accessor motion-complete-flag)

(previous-foot-posit ion
:initforni nil
:accessor previous-foot-position)

(current-foot-position
:initform nil
:accessor current-foot-position)))

(defmethod initialize-leg ((leg aqua-leg) (body aquarobot-body))
(setf (inboard-link (linkO leg)) body)
(setf (inboard-link (linki leg)) (linkO leg))
(setf (inboard-link (link2 leg)) (linki leg))
(setf (inboard-link (link3 leg)) (link2 leg))
(rotate-link (linkO leg) (leg-attachment-angle leg))
(rotate-link (linkl leg) (inboard-joint-angle (linkl leg)))
(rotate-link (link2 leg) (inboard-joint-angle (link2 leg)))
(rotate-link (link3 leg) (inboard-joint-angle (link3 leg)))
(setf (current-foot-position leg)

(ncar 3 (first (transformed-node-list (link3 leg))))))

Figure 7. 5

CLOS Code Excerpt Defining and IMplementating

Aquarobot Leg Kinematics

soI

class AquaLeg

public:

// these dependent objects are instantiated
LinkO *linkO;
Linki *linkl;
Link2 *link2;
Link3 *link3;

/I the flag is set to 1 if the motion is completed without
// reaching any link limits
int motioncompleteflag;

// the flag is set to 1 if the leg is on the ground
int leg-supportflag;

// the angle off of leg one where the leg is attachec to
// the body
double legattachmentangle;

AquaLeg(AquarobotBody&, double); // constructor and initializer
-AquaLego; // destructor
void MoveIncremental(AquarobotBody &, double deltal, double delta2,

double delta3);
double GetLegAttachmentAngle() I return legattachment_angle;)
int GetMotionCompleteFlag() I return motioncomplete flag;|
void SetLegAttachmentAngle(double angle) (legattachment angle - angle;)
void SetMotionCompleteFlag(int flag) (motion completeflag - flag;)
int GetLegSupportFlag() (return leg supportflag;)
void SetLegSupportFlag(int flag) (leg supportflag = flag;)
I;

#endif

Figure 7.6

C++ Code Excerpt Defining Aquarobot

Leg Kinematics

59

• I • °I I •I

to the AquaLeg class are included within the class definition.

An example, shown in that figure, is the "Move Incremental"

function which increments the joint angles of a specified leg

by a given amount.

The C++ function similar to the CLOS "initialize-leg"

function is the C++ constructor "AquaLeg" shown in Figure 7.6.

This function requires an AquarobotBody class and a double

number as inputs. This and the other AquaLeg functions are

defined within the AquaLeg.C file (Figure 7.7). Like the CLOS

version, it is within the constructor that the dependent

objects, LinkO through Link3, are instantiated. Similar to

the CLOS version, other functions may be called or slot values

altered. The "matrix" class, found within the MatrixMy.C and

MatrixMy.H files (see Appendix C), is a class utility and is

used within the AquaLeg constructor.

D. AQUAROBOT OBJECT INSTANTIATION CODE

Objects may be constructed in various composition within

an OOP. However, the method of actually instantiating an

object varies among 00 languages. The CLOS version, shown in

Figure 7.4, displays one top level object while the C++

program, shown in Figure 7.3, makes seven subobjects to

produce one Aquarobot system. This section will discuss the

individual language's method of instantiation using the two

Aquarobot versions.

60

l , l inlllnlnn i B BIIBIB!~n~nI II

// FUNCTION: -AquaLeg()
// PURPOSE: destructor of AquaLeg class

AquaLeg::-AquaLeg')

delete linkO;
delete link0;
delete link2;
delete link3;

// **~***~***********

// FILENAME: AquaLeg
// PURPOSE: constructor of AquaLeg class
// RETURNS: AquaLeg class with values

AquaLeg::AquaLeg(AquarobotBody &body, double angle)

motioncomplete flag - 1; // initializes flag value
SetLegAttachmw.ntAngle(angle);
linkO - new LinkO;
linki - new Linkl;
link2 - new Link2;
link3 - new Link-,

// initial link values initialized

II temp matrix adds in the T matrix needed for the physical
// attachment of the leg to the body

matrix temp;

II updates the Transformation matrix from body center to the
1/ leg attachment point

temp.UpdateTMatrix(Get.ZegAttachmentAngleC),O.,O.,O.);
temp = *body. . matrix * temp;
linkO->RotateLink(&temp ,link0->GetInboardJointAngle0));

linkl->RotateLink(link0->Hmatrix, linkl->GetInboardJointAngle));
link2->RotateLink(linkl->H matrix, link2->GetInboardJointAngleo));
link3->RotateLink(link2->Hmatrix,link3->GetInboardJointAngle());

Figure 7.7

C++ Code Excerpt Implementing Aquarobot

Leg Kinematics

61

1. CLO Object Description

The CLOS version produces an Aquarobot by performing

the function "aqua-picture" in the LISP screen environment.

This function's code is displayed in Figure 7.8 and

instantiates a top level object, Aquarobot, (named "aqua-l")

in its first line using the make-instance command. The class

"aquarobot" is used as the blueprint for this instantiation.

This class consists of one body and six legs ("legi" through

"leg6") as dependent objects. These slots are instantiated

using the same make-instance command when an "aquarobot" is

created. Slot values are instantiated within the aqua-leg

instantiation using the variable :leQ-attachment-angle which

was the initializing argument for a slot with the same name in

the aqua-leg class (Figure 7.5).

2. C++ Object Description

Bot.C (Figure 7.9) is the main program the C++

version. This program controls the construction of the

Aquarobot. The AquarobotBody and six AquaLegs are

instantiated at this top level and they are all subobjects

since there is no explicit Aquarobot instantiated. Similar to

CLOS, each object is given a name (for example "leg3") and

initialization values at the same time it is instantiated.

C++ does not provide a command that equates to CLOS's make-

62

(defclass aquarobot ()
((body

:initform (make-instance 'aquarobot-body)
:accessor body)

(legi
:initform (make-instance 'aqua-leg :leg-attachment-angle (deg-to-rad 0))
:accessor legl)

(leg2
:initform (make-instance 'aqua-leg :leg-attachment-angle (deg-to-rad 60))
:accessor leg2)

(leg3
:initform (make-instance 'aqua-leg :leg-attachment-angle (deg-to-rad 120))
:accessor leg3)

(leg4
:initform (make-instance 'aqua-leg :leg-attachment-angle (deg-to-rad 180))
:accessor leg4)

(leg5
:initform (make-instance 'aqua-leg :leg-attachment-angle (deg-to-rad 240))
:accessor leg5)

(leg6
:initform (make-instance 'aqua-leg :leg-attachment-angle (deg-to-rad 300))
:accessor leg6)))

(defmethod initialize ((aqua aquarobot))
(transform-node-list (body aqua))
(initialize-leg (legi aqua) (body aqua))
(initialize-leg (leg2 aqua) (body aqua))
(initialize-leg (leg3 aqua) (body aqua))
(initialize-leg (leg4 aqua) (body aqua))
(initialize-leg (leg5 aqua) (body aqua))
(initialize-leg (leg6 aqua) (body aqua)))

(defun aqua-picture ()
(setf aqua-i (make-instance "aquarobot))
(initialize aqua-1)
(setf camera-1 (make-instance 'camera))
(create-camera-window camera-i)
(take-picture camera-1 aqua-i))

Figure 7.8

CLOS Code For Aquarobot Class

63

main(

/* value returned from the event queue *

short value;
long mainmenu:

long hititem;

FILE *ifp:
ifp - fopen('*bot.det","r");

/* initialize the IRIS system ~
initialize 0;

/* Create Pop Up Menus/
mainmenu - makethemenus();

// make the robot from its pieces
Aqua robotBody aquabody;
AquaLeg leql(aquabody,0.0);
AquaLeg leg2(aquabody, 60.0);
AquaLeg log3 (aquabody, 120.0);
AquaLeg leq4 (aquabody, 180.0);
AquaLeg legS (aquabody,240.0).
AquaLeg leg6 (aquabody, 300.0):

Figure 7.9

C++ Code Excerpt From Main Program Showing

Instantiation of the Parts of Aquarobot

64

instance command. Instead, C++ instantiates an object by

declaring the class and providing a name and information

necessary.

3. GRAPHICS

1. Graphics Display

The CLOS version of Aquarobot (Appendix A) was

graphically simulated on a low end Silicon Graphics Indigo

graphics workstation using a LISP camera object. This is the

camera.cl file in Appendix A and it was created as a debugging

tool because CLOS does not provide a graphics capability

within its library. Examples of the CLOS graphics produced by

a camera object are in Appendix C. The C++ version of

Aquarobot (Appendix B) was simulated on the same workstation

as the CLOS code. The C++ code uses the system's basic

graphic library, gl. The C++ graphics code will be discussed

in this section.

The C++ simulation was developed to support the

debugging of control software. A user's manual explaining its

use in this application has been produced (Suzuki, 1993). The

graphics code is included in bot.C in Appendix B. This file

includes the main program (a requirement of C++) which

provides the initial instantiation of Aquarobot and controls

function calls. This file also provides the graphics setup

(in the initialize function) and the function that draws the

65

stick figure Aquarobot (in the drawaqua function). This

coordination of bot.C is depicted in the flow diagram in

Figure 7.10.

Aquarobot is instantiated in the reset position.

Figure 7.11 displays this first graphical view. The next

motion for Aquarobot is provided from the output of the gait

algorithm. The information is provided by the position and

orientation change of the body and the change in joint angle

for each joint of each leg. The respective changes are

transferred to the body's MoveIncremental function and leg

MoveIncremental function. These functions update desired body

and link positions. The body's function is called first

because each leg uses the body's updated H matrix computation

in their functions. The function FindPositions determines the

Cartesian coordinate location of each joint and the footpad

for each leg, as well as the body's position and orientation.

Figure 7.12 shows a change ordered in one of leg one's joint

angles. The C++ graphics code continuously polls for an

acceptable queued signal. This signal determines the path

taken and the functions performed within that option.

The CLOS version uses the user interface on the

terminal as its main program. As shown in the script file of

Appendix C, this method does not use an explicit continuous

polling loop like C++. Rather, LISP provides an infinite

read-eval-print loop within its user interface. Appendix C

66

start Make one robotobject

SFind Joint

Coordinates

I

no
while enlu Action

TRUE 7 Performed

I default Gait Algorithm
-es function

ove Incremental

idJoint Coord

. Draw Aquarobot

- ~SWap Buffers ---------------

Figure 7.10
C++ Program Flow Diagram for Main Program

67

- -iq-r- - I-I

I Arpmur ohot (;Y-Aph i rI) 1 A

also provides examples of Aquarobot graphics obtained using

the code in Appendix A.

2. User Interface

In the C++ version of the Aquarobot simulation code,

one acceptable queue signal is the clicking of an option on

the menu shown upon the screen. Figure 7.12 displays the menu

and its options. The options provide various camera views of

Aquarobot and the ability to read from a data file that

consists of data changes. The camera views are particularly

helpful in the debugging of gait motions conducted in the gait

algorithm function.

F. SUMMARY

C++ and CLOS are both similar in their method of defining

a class. The instantiation technique differs between the

languages with C++ requiring a class constructor function that

defines the instantiation while CLOS uses a reserved command

and the class definition.

The Aquarobot programs were not designed from identical class

and object hierarchies and this provides varied examples of

design as well as 00 language variations. Appendices A and B

include the entire CLOS and C++ codes. Appendix C provides a

script file and graphical pictures produced using the CLOS

version. The next chapter evaluates the CLOS and C++ codes

and their performance.

69

Figure 7.12

Ordered Motion Aquarobot Graphic Display

70

VIII. EVALUATION

A. IMTODUCTION

Both the CLOS and C++ versions were successful in

producing a graphic simulator of Aquarobot. Each code,

however, varies in its graphical performance and code

characteristics.

3. CLOB/C++ CODB EVALUATION

The CLOS code usually requires less lines of code to write

a function than C++. The codes in Appendices A and B display

approximately a three to one ratio of length in favor of CLOS.

This compact code provides CLOS an advantage in

understandability and prototyping. Unfortunately, CLOS

function definitions, when optimized for conciseness, may be

rather cryptic. C++, although longer in length, is similar in

format to many more common languages, and therefore it is in

some ways easier to read, especially by programmers not

skilled in CLOS and LISP.

CLOS provides dynamic memory allocation and uses garbage

collection to accumulate unused memory space. Acti-ity is

suspended during garbage collection methods. In contrast, C++

uses a memory heap which requires memory to be removed and

then explicitly returned to the heap when the memory space is

no longer needed.

71

S I ll ll i •nnI I I I I I I - - I I

C++ and CLOS are both similar in their method of defining

a class. The instantiation technique differs between the

languages with C++ requiring a class constructor function that

defines the instantiation while CLOS uses a reserved command,

make-instance, and the class title.

C. CLOS/C.+ GRAPHICAL EVALUATION

Both Aquarobot versions were simulated with the same leg

and body motions. The time required to calculate new joint

parameters via kinematics was recorded. The compiled CLOS

version requires 310 ms for execution and display of one move

(six degrees of freedom for body motion and 18 leg joint

motions) while 160 ms is required for the same result using

the C++ version.

The numerical results above were run without either code

being optimized, nor were compiler switches set for optimized

code generations. The C++ version performed faster than the

CLOS version by a factor of two to one. The C++ speed

advantage was not noteworthy enough to recommend against using

CLOS unless execution efficiency is the dominant factor. In

addition, CLOS required less programming effort (i.e., more

compact code) than C++. This author recommends CLOS as a

prototype executable specification code when a complex systems

are involved. However, the common format and familiarity of

C++ provides a better comprehension of the code by others who

72

SI I IIllilllll II B IllI "I II

might use or modify it (which are major advantages). In

addition, it appears that C++'s two to one speed ratio may be

improved with optimization.

D. SMWOARY

The C++ and CLOS Aquarobot objects have been designed

using classes that are common to all rigid body manipulators.

The generic classes are defined in both code versions and can

be incorporated into other robot design code. This

reusability of 00 code as well as its simple modification

steps are advantages to this design in this and other research

projects, since future researchers may build on current work.

This author's C++ code is currently being used in Aquarobot

dynamics research for a dissertation at Ohio State University

(McMillan, 1992).

The C++ code is also being used for its original purpose

as a simulator to debug control algorithms. Specifically,

Master degree students at the Naval Postgraduate School are

currently using this simulator to investigate gait algorithms

(Schue, 1993). The graphical simulator provides a useful and

time saving method to check this work visually. It also

provides an environment where innovative methods for motion

can be tried without requiring the physical robot to be put

into danger. The last chapter of this thesis provides

conclusions concerning this research project and suggests

topics for future research.

73

1 I IIIIIIIIIIIIIIIIII

IX. CONCLUSIONS

A. INTRODUCTION

This thesis represents the beginning of a major research

effort to provide a generic walking robot simulator, although

the concepts developed here can be used for any articulated

rigid body system The overall research project is centered

around Aquarobot, a six-legged walking machine developed in

Japan. While the techniques and the computer programs

developed and used here are only a small part of the overall

effort of the Naval Postgraduate School Aquarobot project,

they represent critical first steps.

B. FUTURE USE OF CODE IN OTHER ROBOT DESIGNS

The codes discussed in this thesis and included in

entirety in Appendices A and B provide the basic classes

necessary to create any rotary link manipulator objects. The

C++ code (Appendix B) provides the core structure that any

design requires to produce a graphic simulator using Silicon

Graphics Iris systems. The CLOS version (Appendix A) includes

a camera class that can be used on any SUN workstation as well

as any Iris system which has been provided with a LISP

compiler.

74

C. FUTURE USE OF AQUAROBOT

Aquarobot's underwater walking capability provide many

possibilities for its future use. Aside from its original

application to assist with the quality control and

construction supervision for tsunamai sea wall foundations,

other possibilities include its use at marinas to locate large

items dropped into the water, and at lakes or shallow beaches

when an underwater search is needed. Aquarobot could also be

helpful in detecting underwater cracks in piping such as

electric cables and gas lines.

Additionally, the Aquarobot concept presents many possible

uses in military applications. For example, an aquatic

walking machine provides an alternative method of mine

detection on the sea floor or in a surf zone. Upon completion

of an analysis of the feasibility of walking between land and

water, it may be found that this class of robots could be used

for beach inspection prior to an amphibious landing, thus

saving lives.

D. FUTURE RESEARCH IDEAS

This thesis describes the initial stage of the Aquarobot

research project. There are a number of avenues of future

reasearch. Some of these areas include: simulating the

robot's dynamics, modeling the joint motors, modeling

Aquarobot's hinged foot pads, modeling the hydrodynamic

75

effects of legged walking machines, improving the graphic

portion, and gait planning research.

The graphics area alone provides a number of areas of

research such as: providing collision detection and creating

an Aquarobot replica that is more faithful in appearance to

the actual robot. Both graphics codes currently display a

stick figure.

Aside from this thesis' use of CLOS as executable

specification code for a C++ final version, CLOS could also be

used in incremental development of C++. This would take

advantage of CLOS's superior debugging environment. Another

alternative in code production would be to use CLOS as the

main program and import C++ functions. This may in the end

prove to be the best way to construct an interactive

simulator, but this has yet to be investigated.

E. SUMRMRY

Robotics engineers have made impressive progress in

accomplishing the goal of producing an effective and practical

walking machine. Such a machine will permit society to

achieve functions and carry out missions not presently

possible. Also, they will improve current methnds of

performing tasks we do now but not very efficiently, or with

considerable danger to human workers.

The legged robot concept is in its infancy. It is vital

that we have simulation tools capable of providing an

76

accurate model of complicated linkage mechanisms used for

manipulation and locomotion. These tools reduce the need for

a prototype vehicle in the early stages of development, and

provide a safe environment to attempt unusual and possibly

dangerous tests. Trying untested gaits, designs, etc. in a

simulation environment allows for better understanding of the

performance envelope and capabilities of a walking machine,

saves money, and potentially saves lives.

Simulation tools such as modeling algorithms, powerful

computer languages, and graphical capabilities enhance and

promote technology. There are many ways to build a simulation

model, but the use of the combination of kinematic modeling,

object oriented languages, and graphically equipped computer

systems offers a flexible and robust design method for both

large complex robots and simple one limb imitations of

organisms.

Aquarobot is a six-legged walking robot whose software

will be improved using this simulation model. Later

generations of legged machines may also benefit from similar

simulation studies. Aquarobot's actions and stability in

various postures and with different gaits will be tested to

enhance its efficiency and design. Hopefully, through these

tests and improvements, legged machines will be able to

exploit their many advantages in areas where wheeled vehicles

are now used, as well as permitting access to areas where no

vehicle can now go.

77

APPENDIX A - CLOS CODE

link. cl

)defclass link (rigid-body)
I(nmot ion-limit -.lag

:initform nil
-acceemor fotion-lisit-flag)

(twist-angla
:initarg :twist-angle
:acceasor twist -angle)
Ilink -length
:initarg :link-length
:accesmor link-length)
(inboard-joint-angle
:initarg :inboard-joint-angle
:accessor inboard-joint-angle)
(inboard-joint-displacement
iJnitarg !inboard-joint-displacement
:accessor inboard-joint-displacement)

(inboard-link
:initarg :inboard-link
:accessor inboard-link)

(A-matrix
:accessor A-matrix)))

(defclass rotary-link (link)
((uin-joint-angle

:initarg amn-joint-angle
:accessor min-joint-angle)

(max-joint-angle
:initarg :max-joint-angle
:acceasor max-joint-angle))

(defclass sliding-link (link)
((min-joint-displacement

:initarg :min-joint-displacement
taccesuor mn- joint-displac ement)

(max-joint -diuplacoment
:initarg :max-joint-displacemtent
:accessor max-joint-displacement)))

78

aqua-link. @1

fdefelass linkO (rotary-link)
((twist-angle :initform 0)
(link-length :initform 37.5)
(inboard-joint-angle, :initform 0)
(inboard-joint-displaeement :initform 0)
(min-joint-angle :initform (deg-to-rad -3601)
(max-joint-angle, :initform (dog-to-rad 360))
(node-list :initform '((0 0 0 1) (0 0 0 1) (-31.S 0 0 1))
(polygon-list :initform '((l 2))))

(defclass linki (rotary-link)
((twist-angle, :initform (deg-to-rad -90))I
(link-length :initform 30)
(inboard-joint-angle :initforu 0)
(inboard-joint-displacement :initform 0)
lain-joint-angle :initform (deg-to-rad -60))
(max-joint-angle :initform (deg-to-rad 60))
(node-list :initform '((0 0 0 1) (0 0 0 1) (-20 0 0 I))
(polygon-list :initform '((1 2))))

(defelaos link? (rotary-link)
((twist-angle :initform 0)
(link-length :initform 50)
(inboard-joint-angle :inittorm (dog-to-rad 66.4))
(inboard-joint-displacement :initform 0)
(mmn-joint-angle, :initform (dog-to-red -106.6))
(max-joint-angle :initform (deg-to-rad 73.4))
(node-list :initforu '((0 0 0 1) (0 0 0 1) (-50 0 0 IM)
(polygon-list !initform *((I 2))))

(detclass link3 (rotary-link)
((twist-angle :initform 0)
(link-length !initform 100)
(inboard-joint-angle :initform (dog-to-rad -156.4))
(inboard-joint-displacement :initform 0)
(mmn-joint-angle :initform (deg-to-rad -156.4))
(max-joint-angle :initform (dog-to-red 23.6))
(node-list :initform '((0 0 0 1) (0 0 0 1) (-100 0 0 W))
(polygon-list :initfors ((1 2)))))

(defmethod update-A-matrix ((link link))
(with-slots (twist-angle link-length inboard-joint-anglo

inboard-joint-displaceownt A-matrix) link
(sotf A-matrix (dh-patrix (coo inboard-joint-angle)

(sin inboard-joint-angle) (coo twist-angle) (sin twist-angle)
link-length inboard-joint-displacement))))

(defun deg-to-rad (angle) (* .017453292S1994329S angle))

(defmethod rotate ((ink rotary-link) angle)
(setf (inboard-joint-angle link) angle)
(update-A-matrix link)
(setf (H-matrix link) (matrix-multiply (H-matrix (inboard-link link))

(A-amtrix link))
(transforu-node-list link))

(defmethod rotate-link ((link rotary-link) angle)
(cond (angle (max-joint-anglo link))

(rotate link (max-joint-anglo link))
(sett (motion-limit-flag link) t))

(cangle (mmn-joint-angle link))
(rotate link (mmn-joint-angle link))
(setf (motion-limit-flag link) t))

(t (rotate link angle) (setf (motion-limit-flag link) nil))))

79

ldefelass aqua-leg 0)
((leg-attachment-angle

:initarg :leg-attachment-angle
:accessor leg-attachment-angle)

(linkO
:inittorm (make-instance 'linkO)
:accemoor linkO)

(linki
:initforn (make-instance, linkl)
:accesmor linki)

(link2
:inittorm (make-instance 'link2)
:acconsor link2)

jiinO~
:inittorm (meke-Inatance 'link3)
a&cceemor linkS)

(mot ion-complete- flag
:initform nil
:accossor motion-complete-flag)

(previous- toot-poe it ion
:initform nil
a&cceemor provioum-toot-position)

(current- toot -posit ion
:initform nil
:accessor current-toot-position))

(detmethod initialize-leg ((leg aqua-leg) (body aquarobot-body))
(matf (inboard-link (linkfl leg)) body)
(*etf (inboard-link (linkl leg)) (linkO leg))
(meet (inboard-link (link2 leg)) (linki leg))
(meet (inboard-link (link3 leg)) (link2 leg))
(rotate-link (linkO leg) (legy-attachment-angle log))
irotate-link (linkl leg) (inboard-joint-angle (linkl leg)))
(rotate-link (link2 leg) (inboard-joint-angle (link2 leg)))
(rotate-link (link3 leg) (inboard-joint-angle (link3 leg)))
(met f (current-toot-posit ion leg)

(ncar 3 (first (traneformed-node-liet (link3 leg)))))

(detmethod take-picture ((c ame ra c amera) (leg aqua-leg))
(take-picture camera (linkl leg))
(take-picture camera (link2 leg))
(take-picture camera (link3 leg)))

(detmethod move-incremental ((leg aqua-leg) increment-list)
(rotate-link flinkO leg) (leg-attachment-angle leg))
(rotate-link (linkl leg)

1+ (first increment-list) (inboard-joint-angle (linki leg))))
(rotate-link (link2 leg)

(+ (sec~ond increment-list) (inboard- joint -angle (link2 leg))))
(rotate-link (link3 leg)

(+ (third increment-list) (inboard-joint-angle (link3 leg)))
(seot (previous-toot-position leg) (current-foot -position leg))
(meet (current-toot-position leg)

(near 3 (first (traneforme-node-list (link3 leg)))))
(setf (motion-complete-flag leg) (not (or (moftion-limit -fleg (linkl leg))

(motion-limit-flag (link2 leg)) (motion-limit-flag (linkS leg)))))

(defmethod feasible-movep ((le aqua-leg) allottmble-sinkage allowable-slippage)
(and (<- (third (current-foot-position leg)) allovable-sinkage)

(or (minump (third (current-toot-position leg)))
(minusp (third (previoum-foot-position leg)))
(<- (vector-length (vector-slippage leg)) allowable-slippage))))

(defmethod vector-olippage ((leg aqua-leg))

(vector-subtract (rest (revers* (previous-foot-position leg))

(rest (reverse (current-foot-position leg)))))

80

(dofclass aquarobot-body (rigid-body)
((node-list

:initform '((0 0 0 1) (37.5 0 0 1) (18.75 32.48 0 1)
(-18.75 32.48 0 1) (-37.5 0 0 1) (-18.75 -32.48 0 1)
(18.7S -32.48 0 1) (37.5 0 -15 1)))

(po lygon -list
:initforma '((1 2 3 4 S 6) (1 7)))

(H-matrix
:initform (homogeneous -transform 0 0 0 0 0 z-init))))

(dofelass aquarobot (
fUbody

initform (make-instance 'aquarobot-body)
:accessor body)

(legi
:initform (make-instance 'aqua-leg :leg-attachment-angl* (deg-to-rad 0))
:accesser legi)

(1*92
:initform (make-instance a&qua-leg :19g-attachment-angle (deg-to-rad 60))
:accessor leg2)

11eg3
:initfors (make-instance 'aqua-log :leg-attachment-angl* (dag-to-rad 120))
:acceasor le3))

(l*94
miit form (make-instance 'aqua-leg :leg-attactument-angl. (deg-to-rad 160))

:accessor 1eq4)
(logs
:iftitfors (make-instance 'aqua-log :leg-attachmient-angle (dag-to-rad 240))
:acceasor legS)

(leg6
:initform (make-instance 'aqua-leg :log-attachment-angle (deg-to-rad 300))
-accessor 1*g6)))

(defuethod initialize ((aqua aquarobot))
itranstorm-node-list (body aqua))
(initialize-leg (legI aqua) (body aqua))
(initialize-leg (1eg2 aqua) (body aqual))
(initialize-leg (log) aqua) (body aqua))
(initialize-leg (leg4 aqua) (body aqua))
(initialize-leg (legS aqua) (body aqua))
(initialire-leg (logg aqua) (body aqua))

(defun aqua-picture ()
(wetf aqua-I (make-instance laquarobot))
(initialize aqua-I)
(sett camera-I imake-instance 'camera))
(create-camera-window camera-l)
(take-picture camere-l aqua-I)

(defmethod take-picture ((camera camera) (aqua aquarobot))
(take-picture, camera (body aqua))
(take-picture camera (1egI aqua))
(take-picture camera (leg2 aqual))
(take-picture camera (leg) aqua))
(take-picture camera (laq4 aqua))
(take-picture camera (legS aqua))
(take-picture camera (1eg6 aqua)))

(defun new-picture ()
(take-picture caaara-l aqua-I))

(defconatant zi-mit -S4.1814664)

(defmethod move-incremental ((aqua aquarobot) increment-list)

81

aq'Ia~cl2

(move-Incremental (body aqua) (first increment-iist))
(move-incre~mental (legl aqua) (second increment-liat))
(move-incremental (1092 aqua) (third increment-liat))
(move-incremental (1*q3 aqua) (fourtn increment-listl)
(move-increimental (leq4 aqua) (fifth increment-liut))
Imove-jncromontal (leqS aqua) (sixth increment-list))
(move-incremental (legS aqua) (seventh increment-list)))

(defconstant null-move-liut ((0 0 0 0 0 0) (0 0 0) (0 0 0) (0 0 0)
(0 0 0) (0 0 0) (0 0 0))

(defuethod feauible-movep ((aqua aquarobot) alloiwable-sinkag*
allowable-slippage)

(and (feasiblo-movop, (legi aqua) allowable-sinkage allowable-slippag.)
(foasible-movep (leg2 aqua) allowable-minkage allovable-slippage)
(feasible-movep, (1eg3 aqua) allowable-sinkage allowablo-ehippage)
(feaaible-movop (1*94 aqua) allowoble-*inkage allowable-slippage)
(fEasible-movep (1*95 aqua) ailovable-ginkage allowable-slippage)
(feaaible-movep (legs aqua) allowable-sinkage allowable-slippage)))

82

Camea. *1 1

(require :xc'v)
(cw: initLialize-common-windows)

(defclass camera (rigid-body)
((focal-longth

:accessor focal-length
tinitform 6)
(previous-point
taccessor previous-point)

(canerA-window
:accessor camera-window)
(H-matrix
:initforu (homogeneous-transform .3 -.3 0 -300 -90 -90))
(invers.-M-.atrix
:accessor inverse-H-matrix
tinitform '.nverse-H (homogensous-transforu .3 -. 3 0 -300 -90 -90)))

(enlargement -factor
:accessor enlargement-factor
:initform 30))

(defmethod create-camera-window ((camera camera))
(setf (camera-window camera)

(cw make-window-stream :borders 5
:left 500
:bottom 500
:width 300
:height 300
:title *aquarobot*
:activate-p t))

(defmethod move ((camera camera) azimuth elevation roll x y z)
(aetf (il-matrix camerai (homogeneous -transform azimuth elevation roll x y z)
(satf (inverse -H -matd x camera) (inverse-H (H-matrix camera,)))

(defoethod take-picture (Icameara camera) (body rigid-body))
(doliat (polygon (polygon-list body))

(draw-polygon camera polygon (transformed-node-list body))))

(dofmethod draw-polygon ((camera camera) polygon node-coord- list)
(let* ((atarting-node-index (first polygon))

(remaining-node-indices (rest polygon))
(start-point-coord (nth starting-node-index node-coord-list)))

(t rano form- and-move-pen -to camera start -point -coord)
(doliqt !node-index remaining-node-indices)

(tr&4nstorm-and-draw-to camera (nth node-index node-coord-list)))
(transform-and-draw-to camera start-point-coord))) ;closes polygon

(dafmethod transform-and-move-pen-to ((camera camera) point -in-earth -space)
(setf (previous-point camera)

(coapute-camera-window-coordinates camera point-in-earth-apace)))

(defmethod transform-and-draw-to ((camera camera) point -in-earth-space)
(let ((to-point

(cc ipute-camera-windoyw-coordinatos camera point- in-earth-space))
(draw-line-in-c ame ra-window camera (previous-point c amera) to-point)
(setf (previous-point camera) to-point)))

(defmethod draw-Iinse-in-camera -window ((camera camera) start end)
(cwedraw-iina (camera-window camera)

(cw:maks-Position :x (first start) :y (second start))
(cw make-position -.x (first end) :y (second end))
:brush-width 0))

(de fmethod :omput*-comra-window-coordinatoo ((camera camera)

83

point-in-earth-space)

(let* ((enlargement-factor (enlargement-factor camera))
(focal-length (focal-length camera))
(point-in-camera-space (post-multiply (inverse-M-matrix camera)

point-in-earth-space))
(x (first point-in-cemera-space)) ;x axis is along optical axis
(y (second point-in-camera-space)) ;y is out right side of camera

(z (third point-in-camera-space))) ;z is out bottom of camera

(if (>- x focal-length) ; handles rear clipping
(list (* (round (enlargement-factor (/ (* focal-lengthy) x)))

150) ;to right in camera window
IS 150 (round (enlargement-factor (I/ (focal-length (- z)) x)))))

;up in camera window

(list -1 -IM))

84

(load *camera~c1-)
(load *link.cl-)

(load *rigid-body.cl-)
(load 'robot-kinwmtics ci.)
(load *aqua.eV,)

(load *aqua-log.cl-)
(load *aqua-link.cl.)

85

rigid-body.al

(d*Eclaus rigid-body

((ocation
:initarg :location
:accessor location)

(velocity
:iflitarg :velocity
:aceesbor velocity)

(acceleration
:accessor acceleration)
(forces-and-torques
%accessor forces-and-torques)

(moments-of-inertia
:initarg :moments-of-inartia
:accessor momeflts-of-inertja)

(mass
:initarg -mass
:accessor mass)

(node-list
:initarg :node-list
:accessor node-list)

(polygon-list
:initarg :polygon-list
:aCcessor polygon-list)

(transformed-node- list
:accessor transformed-node-list)

(N-matrix
:accessor H-matrix)

(current-time
:accessor current-time)))

(defmethod move ((body rigid-body) azimuth elevation roll x y z)
(setf (K-matrix body)

(homoeneous-transform azimuth elevation roll x y z))
(transform-node-list body)
(update-position body))

(defmethod move-incremental ((body rigid-body) increment-list)
(setf (N-matrix body)
(matrix-multiply (H-matrix body) (homogeneous-trsnsfors,

(first increment-list)
(second increment-list)
(third increment-list)
(fourth increment-list)
(fifth increment-list)

(transform-node-list body) (it nrietls)1

(update-position body))

(defmethod get-delta-t ((body rigid-body))
(let* ((new-time (get-internal-real-tjme))

(delta-t UI (- new-time (current-time body)) 1000)))
(setf (current-tine body) new-time)
delta-t)

(defmethod start-timer ((body rigid-body))
(setf (current-time body) (get-internal-real-time)))

(dafmethod update-rigid-body ((body rigid-body))
(let ((delta-t (get-delta-t body)))
(update-acceleration body)
(update-H-matrix body delta-t)
(transform-node-list body)

86

rigid-body.el 2

(update-position body)
(update-velocity body delta-to))

(defmethod update-acceleration ((body rigid-body))
(sett (acceleration body) :;(ljst u-dot v-dot w.-dot p-dot q-dot r-dot)

(multiple-value-bind
(Fx FyFz L M u vwp qr Ix YIyZ)
(value.- list
(append
(forces -and- torques body) (velocity body) (moxxents-of -inertia body)))

(list (.(v r) (* -1 w q) (/ rx (mass body))
* gravity* (first (third (H-matrix body))))
w. (WP) (* -1 u r) (/ Py (mass body))

0 *gravity* (second (third (H-matrix body))))
u. uq) (* -l vp) (/lFz (mass body))
* gravity* (third (third (H-matrix body)'))))

(/ .~ (-12 Ix) r p) N) Ty)

(definethod update-velocity ((body rigid-body) delta-t)
(Setf (Velocity body)

(vector-add (velocity body)
(scalar-multiply delta-t (acceleration body)))))

(defisethod update-H-matrix ((body rigid-body) delta-t)
(setE (H-matrix body)

(matrix-multiply
(K-matrix bodyl (homoganeoue-transform

(delta-t (sixth (velocity body)))
(delta-t (fifth (velocity body)))
(delta-t (fourth (velocity body)))
(delta-t (first (velocity body)))

delta-t (second (velocity body))
(delta-t (third (velocity body)))))

(defmethod transform-node-list ((body rigid-body))
(uetf (transformed-node-list body)
(mapcar V(lambda (node-location)

(post-multiply (H-matrix body) node-location))
(nod*-list body))))

(dfmeothod update-position ((body rigid-body))
(setf (location body) incar I (first (transformed-node-list body)))))

(defmsethod get-node-polygon-list ((body rigid-body))
(list (trensformed-node-list body) (polygon-list body))

(defconstant *gravity* 32.218S)

87

(defun transpose (A)
(cond ((null (cdr A)) (mapcar 'list (car A)))

It (mapcar 'cons (car A) (transpose (cdr A))))))

(defun dot-product (x y) ;A vocora is a list of numerical atoms.
(apply '- (mapcar -x yM) ;A matrix is a list of row lists.

(defun vector-length Ix) (sqrt (dot-product x xM)

(defun post-multiply (IN x)
ieond ((null (cdr 14)) (list (dot-product (car M4) xM)

It (cons (dot-product (car N) x) (post-multiply (cdr H) xl)M)

(defun pro-multiply (x M4)
(post-multiply (transpose 14) x))

(detun matrix-multiply (A 9)
(cond ((null (cdr A) (list (pro-multiply (car A) B)))

It (cons (pro-multiply (car A) 8) (matrix-multiply (cdr A) 9)))))

(defun chain-multiply (L)
(cond ((null (cddr WI) (matrix-multiply (oval (car WI) (oval (cadr LI))))

It (matriu-multiply leval (car L)) (chain-multiply lcdr LW)))

(defun cycle-left (L) (mapcar 'row-cycle-left LI)

(defun row-cycle-left (R) (append (c', R) (list (car RI))

Idefun cycle-up WM (append (cdr M4) (list (car 1M)))

(dEfun uni -voctor lone-column length)
(do (In length (1- n))

(R nil (cons (cond (I- one-column n) 1) It 0)) RI)
((zerop n) RI)

(defun unit-matrix In)
(do ((row-number n (1- row-number))

(I nil (cons (unit-vector row-number n) IM)
((zerop row-number) M1)

(defun concat-matrix (A 8)
(cond ((null A) 9)

It (cons (append (car A) (car 8)) (concat-matrix (cdr A) (cdr B))))

(defun augment (A) (concat-matrix A (unit-matrix (length AM))

(defun normalize-row (RI (scalar-multiply 1/ 1.0 (car RI) RI)

(defun scalar-multiply (a x)
(cond ((null x) nil)

It (cons I* a (car I)l (scalar-multiply a (cdr xl))M))

(defun solve-first-column (W4
(do* M(L M (cdr LM)

(L2 (normalize-row (car MM))
(W (list L2) (cons (vector-add (car LI)

(scalar-multiply I- (caar Ll)) 1.)) W3)))
((null (cdr LM) (reverse WM)))

(defun vector-add Is: y) Imapcar '. x y))

(defun ',ector-subtract (x y) (mapcar '- x y))

(defun square-car IN4)

88

reb~-klmtias.l -2

(do ((in (length I))
Mli N (cdr LM)
IL2 nil icons (near is (car Li) L~2)))

((null Li) traverse LMI))

(defun nedr in L) (cond ((*erap n) Li(t (cdr (ncdr 41- n) LIM))

(defun near in L) (cond ((zerap a) nil)
it icans (car L)i(near (1- n) (cdr WMI)))

(defun nmax-car-first (a L)
jappend (max-car-first (scat n W)i (acdr n LMi

(defun matrix-inverse M14
(do ((Ml (wax-car-firut (augaent H))

(cond ((null Ml) nil)
it (nisax-car-tirst n (cycle-lott (cycle-up KMl)))

(n (1- flength 14)) (1- nMi
((or (minump n) (null Mlii Icand ((null MI) nil) it (square-car KIM)))
(setq MI (cand ((2eraP (csar NMl nil) (t (solve-first-column HMl)))

(defun max-car-first (L
(cond ((null (edt LW) Li

it (if 0- (&bs (esar L)) tabs (cear (meg-car-first (cdr LIi)) 16
(append (max-car-first (cdt LW (list (car Iii)))

(defun iUh-entrix Icoarotate sinrotato costvist sintwist length translate)
(list (list cosrotate (- (* coetwist sinrotat*))

(* siatwist sinrotatei (* length cOeratatel)
(list siarotate (* coetwist Cfarotate)

(- (* sintvist coerotateil (* length sinrotate))
(list 0. sintuist coetwist translate) (list 0. 0. 0. 1.)))

(dsfun homoeneocus -transform (axiauth elevation roll x y z)
(rotation-and-translation (sin asimothi (coo azinuth) (sin elevation)
(coo elevation)i (sin roll) (coo roll) x y W)

(dafun rotation-and-translation (spsi cpsi oth cth aphi cphi x y a)
(list (list (psi athi (- (* cpsi oth sphi) (I *psi cphi))

(* (psi oth cphi) (* apsi sphi)l x)
(list (spoi cth) (# (- cpsi cphi) (- *psi sth *phil

I- (* e"i oth ephi) (0 cpsi uphi)) y)
(list (- eth) I* eth aphM) (* cth ephi) 9)
(list 0. 0. 0. 1.))

(defun inverse-N (Ni
(lot* ((minus-P (list (-(fourth (first Ni)

(- fourth (second NiM
(-(fourth (third NiM))

(inverse-U (transpose (square-car (reverse (rest (reverse 11))M))
(inverse-P (past-munltiply inverse-U minus-Pi)

(append (concat-setrix inverse-Ut (transpose (list Inverse-P)j)
(list (list 0 0 0 MM1)

59

APPENDIX B - C+ + CODE

bot.h 1

/1 *..*..e...**..ee#wto*.eoe.**..St*....*seet~fe*.*S..tetwe*,

// FILENAHE: bet.h
/I PURPOSE: defines constants end functions used iat bot.C
// NO. : This Is an IRIS 3D program written In C*+
// AUTHOR: S L Davidson
// DATM 5 January 1993

/ provides constants for menu processing options
*dsfin. CAIMERA
def in. ABOVE 2

*def in. SEIlEND 3
*define RITSIDE 4
#def in. LTSIDE S
*define FILEREAD 6
Odefine KEZYUREAD 7
#define RS•EFfILE 8
#define RESET 14
*define EXIT 15

* define NEARCLIPPING 10.0 // planes defined
*define FARCLIPPING 1023.0

define VIEIIX - 0.0 / location of the viewnoint */
#define VIEWY - 40.0
#define VIEUX - 400.0

#define RIfX - 0.0 /* location of the robot /
#define REFY - 0.0
#define R3TZ - -200.0

long makethemenus 0(

static float rfx:l/ reference point on in the x direction '/
static float rfy;/* reference point on in the y direction */
static float rfz:/* reference point on in the z direction */

static float vx: /* view point on in the x direction */
static float vy; /* view point on in the y direction /
static float vz; /* view point on in the z direction '(

double deltal,delta2,delta3:
double delazdeleldelroldelx.dely.delz:

void processmenuhitflong hititem);

void initioliae(l; // initializes graphics layout

void loadunito; // a unit matrix used in rotation/translation

void projectionandviewingmatrix(flost vx,.floot vyfloot vz,float refx,float refy,float ref

void buildnonmovingviewingmatrix(float vxfloat vyfloat vz,float refxflost refy,flot re
fal-

void drawaqualdouble*, double*. double *, double *, double *.
double , double): // includes all legs and body

90

bet.C C

1/FILENAME: bot.C
IIPURPOSE: This f ile makes a stick aquarobot graphics

1/ interactive design
/1 It utilizaes Kinematic functions to determine Xzy
II coordinates

1/CONTAINS: functions shown in bot.h
IfNOTE: This is and IRIS 3D program written in C++
IIAUTHOR: S L Davidson
IIDATE: 15 February 1993

*include "91.h" // graphics library
#include "device.h" IIgraphics library file
#include "bot.h" I declaration file
#include <atdio.h> IIC++ library
*include, Link.H"
#include ftigidflody.N"
#include "MatrizdMY.N
6 include, "Aquarobotflody.N"
linclude "Kinaematic .c.
#include 'AquaLeg.N"

main()

IIvalue returned from the event queue
short value:
long mainmenu;
long hititem;

FILE *ifp.*
ifp - fopen(-bot.dat-,r-);

// initialize the IRIS system
initialize 0:

// Create Pop Up Menus
mainmenu - makethemenusO0

// makes the robot from Its pieces
Aqua robotflody aquabody:
Aqual~eg legllaquabody,0.0);
AquaLeg leg2loquabody, 60.0);
Aqu*Leg leg3 taquabody. 120.0):
AquaLeg leg4 (aquabody. 160.0):
Aqualeg9 legS taquabody,240.0);
AquaLeg legE(aquabody, 300.0):

Return Coordinates coord:
Passing-Items pass.
Next Motion trans;
mnt ans:
ang - 0:
pass~lenum - 9;

coord - FindPositions (aquabody, legl. 1*92, leg3, 1*94, leg5, legS):
trans - ?ransferToGaiticoord, aquabody);

while (TRUE)

91

bet. C 2

IIdo we have something on the event queue?
if Iqtest ()

switch (qrsead (value))

came, HZUAW:

reshapeviewport (0
break.

caea MEMUB3tTTOW:

if (value - 11

)dtiteso - dopup(meinmena);
procesamenuhit (hititse):

brook:

II queue used for calling the gait algorithm
cast AKEY:

trans - Gait Algorithettrans):

delaz - trane.bodymotion[O);
delel - trans.bodymotionllJ;
deirol - trans.bodymotionl2j;
delz - trans.bodymotion[31:
dely - trans.bodymotionljj
delt - trans.bodymotion(S):

aquabody. Move IncraimentalI (dela z. delel, doeIrcl. delt. dely. dolt):
1*91. PovemIncrement&l Ifaquabody trvans. lelfot ion to0].

trans.legluotion(13.trans.leglmotionl2j,:
leg? .Hovlncremental (equabody. trans. leg2uotion 103,

trans.leg2umotion(13,trana.legZ~motiong2l):
1eg3 .move~ncre~ntal (aquabody, trans. leg3motion (03.

trans.leg3motionhl3,trsns.leg3umotionr2));
1eg4 .Novelncreaental (aquabody, trans. leg4uotion (03.trans.1eg4motion(1J,trans.legsmetion(23);
legS .Mowelncrem~ntal (aquabody. trans. leq5mtion 103.

trans.legsmotionhl),trans.legswotiong2l,:
1eg6.Hovelncremental Iaquabody.trans.legE=ation (03.

trans.leg6motionhl),trsns.legssmotionr2J):

coord - rindPos it ion*sIaquabody. log 1. leg2, leg3. 1*94, le95, legG):
trans - Traneftr~oGait (Coord, equabody);
brook;

1/reads incremental changes from a file
case PKCT:

printf('\n Rteading file motion\n"):
pass - File Use (ifp. equabody, legi. leg?,leg?.

1eg4. legS, leg):
printf("Sd, If, %If. %lf\n",pess.legnum,

pass.dellpass.del?,paas.del?,:*
pase.lognuu - 9;

coord - FindPositions (squabody. legi leg?, leg?.

trans - ?ransferToGeit (coord~squebody):
break;

92

bet .C 3

ease on.
rewind Iitp):
break;

default:

break;

// end switch on event queue item

I dlendif qtest()

color49131): // background color
ciGSrO:

// turn on 2-buffering
sbuffer MmU~);

// clear the a-buffer
selearo;

buildno mvingviewingmtrix (vx, vy, vi. rfx, rfy, rtzl;
draau I codbodyc) * coord. logic), (coord. leg2c), (coord.1le3c) *

(coord. lcg4c) * coord. lcqSc).*(coord . legc)):

IIturn z-buffering off
abutter (FAL3):;

// change the buf fers
muapbuftera 0:

genter (ARET. 11;

1 / end of main

I UWOCT!ON: 114!1IAL!22()
I ... * f... * *... .**.*..e...... *0.......t....*.

void initialize ()

se at up the preferred aspect ratio
ke~papect tlO4XSCMEUP+,IMAIRSCR*D6+l):

// set up window site
prefposition (700.0, 1200.0, 200.0, 700.0);

// open a window for the program
winopeui(Aquaflobotp:;

// asks a title
wint itIs ("AquaRobot");

// put the IRIS into double buffer mode
doublebuffero;

93

bot .0 4

// configure the IRIS 100ans one the above comand settings)
g~onffig i):

// define acceptable queue.
qdevice(PSODRA);
qdevice (RAlY):
qdovice (PIEY):
qdmvice(RE31):
qdeviee (NIW3BUTWN)

// Initial location of viewpoint fcamera eye)
vX - 0.0;
vy - 40.0:
vs - 400.0:

// initial location~ of robot foot poda
rfu - 0.0:

//Function Hake-the HeNiam

long mekethemenma I)

long toPAMnU:
long cameraenu:

eIcmbers views
cameramenu - neupupO:
sadtopup(cameraaenu. Camera View St :
addtopupieameramenu.-ASOV %x2 1 NENIND 101).
addtopup~camszamenu,RW(?T SIDE Ux4 I LEFT SIDE %xS"):

// bu~ild the top level menu
topanuw- defpup('Roll Off Side %ti Camoea 113t %ml

rilefead lug lResetrile 10S Ieybdftead U7ii
Reset Ux141 Exit 115",cameramenu):

1/return the naw of this menu
return (topinenul;

/1Function Procesa Menu Nit

void proceasmenuhit (long hit item)

switch (hititem)

case CA3MM:
break:

94

bot.c

case ABOVE: vc - 0. 0;
vy - 300.0;
Wa - 0.0;
rfz - 0.0;
rfy " 0.0;
rfs - 0.0;
break;

case BEHIND:
vx - 0.0;

vy - 50.0:
vz - 250.0;
rfx - 0.0;
rfy - 30.0;
rfz - -200.0;
break:

case RTSIDE:
vx - 250.0;
vy - 50.0:
v2 - 0.0;
rfx - -200.0:
rfy - 50.0;
rfz - 0.0:
break;

case LTSIDE:
vx - -250.0:
vy - 30.0:
vz - 0.0:
rfx - 0.0;
rfy - 0.0.
rfz - -200.0;
break;

case FILEREAD:
qenter(PKEY. 1):
break;

case RESETFILE:
qenter(lKY., 1):
break:

case RESET:
vx - 0.0;
vy - 40.0:
v2 - 400.0:
rfx - 0.0;
rfy - 0.0;
rfz - -211.0:
break:

case EXIT:
exit(0):
break:

// End Switch

95

............

A

I

I

bot .C I

II fUNCTION: BUILDWMONOVINGVIZWINOMATRIX
// PURPOSE: use with objects that are in the same coordinate
// system and aren't moving with continuous
// rotations/tranalations/scalings
// *.*............es....oeeeeae~ee*ee..eeeeeeeeett**teee**t

void buildnonmovingviewingmatrix(float vx.float vy,float vs,
float refx.float refy,float reft)

loedunit 0)

project ionandviewingmatrix (vx, vy, va, refi, refy, refz);

// *.,*.....*.*.*....S**....t***.*O***..**,***eeeee*et*e.

/ FUNCTION: PROJECTIONANDVIEWINGMATRIX
// PURPOSE: provides the projection and viewing matrix

void projectionandviewingmatriz(float vx,float vy,float vz,float refx,float refy,float ref
2)

// perspective projection 3D for the world coord sys
II the near and far values are distances from the viewer
// to the near and far clipping planes,
"// *e are at (vxvy,vs) and looking towards
// the center point of the object..

I/ (towards (refxrefy,refx)).

perspective(450.1.25,NEARCLIPPING,FARCLIPPING): 4
lookat(vx, vy, vz, refx, refy,ref:, 0);

// FUNCTION: LOADURIT
// PURPOSE: this routine loads a unit matrix onto the top
// of the stack
/1 *�*t~t�~t**�*tt.t. * *....t*. t*..**t.t*

void loedunit()

static float un[4]I4J - I 1.0, 0.0, 0.0. 0.0,
0.0. 1.0, 0.0. 0.0,
0.0. 0.0. 1.0, 0.0,
0.0, 0.0, 0.0, 1.0 !;

loadmatrix(un);

/ / *.e...*....*..*.........*....l........ .*.........

// FUNCTION: AOUA DRAWING
/1 PURPOSE: draws the robot at coordinates provided

.. .*.......• * **.....• *

void drawaqus(double *bodyc, double *leqlc, double *leg1c, double
*leg3c, double *leg4c, double "legSc, double "1e96c)

I

color IWNITE);
linewidth(3):

96

SI IIIIIIII~llllllllI

4

bot. C 7

/1+x to right, +Y up, +z Out Of *croon ->for graphics
+x *kout of 1e91, +y out of *croonl, -z down->for kinematics

/1 x z y
-votebodyc 13l, -bodyc(SIS)~bodyc 14));
drow(bodyct6) ,-bodyctS),bodyctl')):
drbw(bodycI9),..bodyctllJ,bodyeclO0),;
draw(bodycI12J.-bodyc(141.boyc(13I).
draw(bodycllSj,-bodycll73),bodyelEJ):;
draw(bodyC~lS),-bodycf2Oj,boyc[lgJ),
draw(bodycI3I,-bodycISJ,boyc14));

IIdraw* a line froms body center to 1eg1 5aint. I
lifletidth(l);
mo1vS(bodyctO3,-bodyc(2J,bodycil3))
drew(bodyc(3J.-bodycl5j.bodyc(43));

IIdraws 1.91
color (YELLOW):
linewidth (5):

II 2 y
move(leglcCO),-leglcl2I,leglc~l)):
draw(leglc(33.-leglc(5Jleglc(4)):
draw(leglclE),-leglcgS),llegl(73(;
draw(1*gxcI93.-1eglcjxI3,legxcjlo]).

Ifdraws 1*g2
Color (GREEN):
linowidth (SI:
ntove(leg2cIO),-leg2cI2],leg2cll)).
draw(leg2c(33.-1eg2c(53,leg2cg4)J:
draw (log2c I G , -1"2c (61, 1"2c 17))..
drawv(1"2c[191 , -leg2c 111I, 1*g2c 1101);

IIdraws 1993
color (GREEN);
linewidth IS),
moove (leg3c101, -log3c[21,leg93cI I)),
draw(leg3cC3),-ieg3c(SI,1.g3c141);-
draw(leg3c(EJ,-leg3c[g],1eg3ci7));
drawfleg3c[9),-leg3clll.leg3cglo3))

IIdraws 1994
color (GRkEEN4):
linewidth(S) ;
isve(leg4c(01,-leg4c(2),leg4c(Ix))
drav(leg4cg3J,-leq4cgS).leg4c(41).
draw(leg4cISJ.-leg4cgg),1*94c17));
draw(leg4C[91,-1eg4cgllJ,1*g4c(1oJ',;

IIdraws 1e95
color tGREEN):
linewidth (5);
lsove(leg~cIOJ,-legScC2j,legSc(1],:
draw(legSct3),-leg5c(5),legSC14

1);
draw(1eg5cI6),-leg~clg1,leg~cg7,);
draw(leg5c(9),-leg~clll],legSclloI);

//draws 1*96
color (GREEN);
linewidth(S);
move~leg6c[0),-leg6c(2I,1ag6cI1I);

97

b.i f'Ipcjr' 16 -. q6 - I9c) .196C I'?) I

98

Aqualag.3 a

/I FXIZND.ME: AqfuaL".g
1/PURPOSM: Declarations for AquaLeg class

IIAUTHIOR: S L Davidson

IICON4ENTS: Definition of AquaLag clams and functions that
II apply to this class

#ifndef N AQIALZG
#define N-AQUALZG

linclude <atdio.h>
#include Ahquarobotbody .M
*include 'Link.N"
#include 'LinkO.H'
#include "Linkl.HN
#include 'Link2 .H
#include "Link3.11

class AquaLeg

public:

I.1 theme dependent objects are instantiated
LinktO *linkO:
Linki *linkl;
Link2 *link2:
Link3 lIink3:

IIthe flag is set to I if the motion is eompleted without
Ifreaching any link limits

mnt motion coMl1ete flag:

IIthe flag is set to I if the leg Is on the ground
mnt leg support flag:

IIthe angle off of leg one where the leg is attachec to
//the body

double leg attachment-angle:

Aquabeg(AquarobotflodyS, doube): II constructor and initializer
-AquaLegfl: I destructor
void Move Inc rementalI(Aqva irobetflody 6. double deltal, double delt&2,

double delta3):

double GotLegAttschmsntAqI*gl() I return leg attachnantangle:)
mnt GetMotionCompIeteFlag() Ireturn motion -complete flag;)
void SetLegflttachmentAngleldouble angle) fleg attachment angle w angle:)
void Set~otionComylete~llg tint flag) lmotion cowqlote flag - flag:)
m~t OetLegSupportrisg() I return leg support flag:)
void SetLegSupporttlog(int flag) 11*egsupport flag - flag;)

1:
*mndif

99

AquLeg.C I
,f *e*e*e

t
e

t
**

t
•O*****te * @ot~tt****e**~t~t**t***.**..*......l.. '5

// FILENAME: AquaL*g.C
// PURPOSE: Implementation of AquaLeg clans
/1 CONTAINS: AquaLeg()
// Xnitialize(AqueLeg&, AquarobotfBodys)
// TakePicture(Canara&. Aqu•aLog4
// Movelncremental (Aquele"&, deltal,delta2,delta3)
// AUTHOR: S L Davidson
I/ DATE: 11 reb 93

..*et..*e .** *t...**.**..***.*fl...*.**.*..*.......*,...... *5

#include "AquaLeg.H"

II FUNCTIOtN: -Aquaeg ()
// PURPOSE: destructor of Aqualeg Class

AquaLeg: : -AquaLeg 0)

i.1ste linkO:

delete link0;
delete link2;
delete link3;

I, **e
t

**
5 t 5

**
t

eeeeetet*****fl***.****.t**.*.*.*..*.....

// FILZNAME: Aqu•e•K
// PURPOSE: constructor of AquaLeg class
// RETURNS: Aqualeg class with values

AquaLeg::AquaLeg(Aquarobot9ody &body, double angle)

sotioncomplete flog - 1; / initializes flog value
Set LegAttachmant AnglI (angle):
linkO - new LinkO;
linkl - new Linkl;
link2 - new Link2;
link3 - now Link3;

// initial link values initialized

// teoW matrix adds in the T matrix needed for the physical
/a attachment of the leg to the body

matrix temp;

II updates the Transformation matrix from body center to the
II leg attachment point

tesp.UpdateThatrix(GoetLgAttachmentAngle(),0.,o.,o.) ;
teWq - *body.H matrix * temp;
link0->PotsteLink(6temp ,linkO->GetlnboardJointAngle());

linkl->RotateLink(link0->H matrix, linkl->GetlnboardJointAngle();
link2->RotateLink(linkl->H-matrix, link2->GetlnboardJointAngle());
link3->RotatoLink(link2-->Hmatrix, link3->Getlnboard3ointAngle());

II ***ee***5***********eee********t*****.*t**** .* .ee~ee

// FILENAME: Movelncremental
11 PURPOSE: calculate the now link values as a leq rotates
// RETURNS: rotated link's new values are placed in the// respective leg's slots
/./ **s...........s***s**ess......

100

• I ill IIII II I I III I II ... III. . .

Cq 0 2

void A~pin1,q: :Moveincremerital (Aqu.arobotaody Lbody,double deltal,
double delta2,double delta3)

double b;

/1ietalj..1limit flags to zero
l1nrkl->SetMotionLimit7Jag (03:
1ink2->SetMot IonLivnitFlag(0);
link3->SetxotionLimitFla (0);

I// temp matrix adds in the T -matrix needed for the physical
// attachment of the leg to the body
matrix temp;
teMpAUpdnteTMatrix(Gett~egAttachmentAngleO0.,0.,0.);
temp - *body.Hrnatrix 0 temp;
linkO->RotateLink (Ltemp, link0->GetlnboardJointAngle ();

b - deltal 4 linkl->Getlnboard3ointAngle0;
linkl->SetlnboardjointP~ngle (b);
linkl->flotatel~ink(link0->H-matrix. linkl->GetinboardJuintAngle()3;

b - delta? 4 1ink2->Get~nboard~oIntAfmgleO;
link2->Set~nboardJointAngle (b);
link2->tkotate (linkl->II matrix, link2->GetlnboardjointhngleC));

b - delta3 4 link3->GetlnboardjointAnglefl;
link3->Setlnboardjointjkngle (b);
link3->Rotateiink(link2->fl matrix, link3->GetlnboardjointAngleo);

//the motion complete flag is get to I if the
m/rotzion lim-it flags on all legs are not set

SetMotion~omple-teFlag(! (linkl->GvetllotionLitnitFlag() 11
link2->GetMotionLimitFlag() 11 1ink3.->GetMotionLimitFlagO) 3;

//prints the status of the requested motion and prints which
IIlink's motion_- limit_flag was met (if any).

if (GetmotioncompleteFlag() -- 0)
(printf ("Motion Not Completed\n"):

If (1inkl->Get~otionLim~titalg(-- 1)
printf ("link I limit exceeded\n3)

if (link2->GetMotioniimit~lag() -- 1)
printf("link 2 limit exceeded\n"):

if (link3->GetMotionLimitFl~g(3 -- 1)
printf ("link 3 limit excesded\n");

else printf ("Notion coinploted\n");

101.

Aquareobtaedy.X

r PLfMNA: Aquarobotbody.8
// 913308: Declacation of AquarobotMody class

II Subclaos of ftigibody class
iAUiTHOR: S L Davideon
//DATI:; 20 Sep 92

*ifnbdef AOUAMOBOTSOODT
*define RCAOAROSOThOVY

*includm <otdio.h>
*include -RIgIdody .Nt
*includa -Natriay.H-

cLaos Aquarobotoody :public aRigidflody

public-
matrix *body list. I defines the size of the body Using coordinates

double azimnth, elevation, rall:

Aquarobotgody 0: // constructor
void rmovencremental(double~double, double, double, double, double):

tendif

102

I/, FLtKANs Aquarobtfl"dyC
PU ?t10: Implemetation of the Aquarobotbody clogsa

IICOUAINI: initialises thme body form
1/AV"=O: 3 L Davidson
IiDAMS 17 Nov 92

tinclude "Aquarobotflody.mr

IUI C?1OU: Aquarcbotbodyl)
I~PUPO4R Constructor of the UAqurobotbody Cloas
//RZYUIS: Aquatobot "d class with values

Aqua rObotmod::Aqo4-rcbtmody C)

IIeach row is a body point ftay,z)
Uthe first (0 fowl is the body' a physical center, and the rest
o/ re the six points of the body

bodylist - new mtria(7.4,.0I:1

// the body'sa coordinetes ase defined centered at 0.0,0
body liet->val(G,0) 0.; bodylist-"vel(O.l) -0.;

bodyliat)val0,2)- 0: body list->val(0.3) I .;
body-list-),sltl,O) - 7.. body list-3,val(l.1) - 0..:
body list->val(2,2) -0.: body list->vsl(1.3p - 1.:
body liot-"va1(2.01 16.75; body list->val(2,1) - 32.48;
body-list-~val(2,2) -0., body, list-)val(2,3) - I.;
body-list-2-valM3,) -- 11.75: body list->vol(3.2) - 32.46:
body liot->vol(3.2) -0., bodyjLet->valt3,3) - I.;
body list->vsI(4.Q) -37.5: body list-)-valt4,1) -0.:

body ligt-'kvslI4,1) 0., body list->val44,3) - I.;
body list->val(S.0) -- 18.75. body...iat-),val(5,13 -32.48:
body list-"val(5.21 0.: body~lst-).valAS,3l - I.;
body-list-),valt6,D) -19.7S: body. list->vol(6,1) - -32.46:
body~list->vol(6.2) -0.: body list-)wasl(6,3) - 2.:

IIdefines the initial location of the body using the
IN-matrix the inputo to the function are:

II (auimuth, elevation, roll, x, y, z)

IImoves the body coordinates to the initial location desired
body liat-3-TranaformList ('H matrix, *body list),

IIfNICTION: Plovelocroemntal
IIPURPOSM: the body is moved based upon commanded incremental

// degrees of change that are poased in

void Aqua robot~ody -: NoweInc remntal (double del*&, double delol,
double deirol, double dela,doubl* dely, double dels)

double at, *I, ro, x, y, s:
as - asimmath 4 does;.
el - elevation 4 delel:
to - roll + delrol:
a . body liat->Val(C,S) 4 dela:
y - body liqt->vsl(0,l) + dely:
s - body list->vsl(0.2) * dolt;

103

2I

Uonly changes are used below since body list is at current position
Hmtrz-~emoeeeiaa:antog~deaa.dm1.1, dalrol. dels. daly. dm12):

body list -3orsauaozList ('JL.triz. body~liat);

// puts all info in iNmtrix
Uuatrix-"Ka~noa~rnfr~u ag 0:.y)

104

£iamtioe .C

// rnLMA: Rinemstice.C
// lPJ•OS!; to determine poeltionsaRy.2) from the N metrix

/ :to read from a file the now link angle changes
// and update the appropiate leg/link values

to page itemi to the gait function
// AiTjOR: S 1 Davidson
/I DATZ: 15 February 1993
// **eoee**.****a.*.......*..a**.***..o...e..e.e..e..a400e

*include <aMth.h>
tinclude <8tdlib.h>
tinclude <atdio.h>
finclude "Natrim4y.n"
*include "AquLheg.N"
#include "Aquarobotbody. .3
*include "Link.3"

Odefine GROUN3LZVATION 0.0

II structure designed to receive file input
atruct PassingItms i

int legnum;
mnt body;
double dell;
double del2;
double del3;
double del4;
double dolS;
double deli;

):

// structure recieves next desired robot motion from gait
// planning functions
atruct Next Motion I

// desired joint increment values returned from the gait function
double bodymotionti6]
double leglmotion |3];
double leg2motion [3):
double leg3motion131:
double lg4motion 13: ;
double legSmotion[3)1;
double legimotion 13);

// actual position status values sent to gait function
double leg contact flagIi):
double joint limitflag lIJ:
double foot lCoordt3l:
double foot_2_coordt3l:
double foot3 €coord(3];
doablo foot_4_coord[31:
double footSCoordMl:;
double foot_- coordf3l;
double bodycenter-coord[G)I:

I"

// structure designed to consolidate the zyz coordinates of the robot
struct Return Coordinates I

double bodyct2l;
double leglcI121;

105

xam~tics .C 2

double leg2ctl21;
double 1993e(121;
double leq4c[l21;
double legScjl2j;
double le6c 1123,
Jut motion limtit f lag (13):
iut leg SUpport flog(G1,

II zy coordinates are determined from the pleetrix @nd
IIreturn the Cartesian coordinates using the Return Coordinates structure

Return Coordinates T indPosIt ions I iqua robotboey fbody. AquaLeg slegi.
~queLeg 6legl, Aquaieg &leg3. Aqualeg AleV4, AquaLeg SlegS,

AquaLeg Sleg$)

Return-Coordinates *rc:
re - new Return Coordinates;
// body center cioordinate.
rc->bodyclOj - body.body~list'),val(O,O):
rc->bodyc(2) - body.body~list->val(O,2);
rc->.bodyc[2) - body.body~list-"al(0,21:
// body points to drew
rc->bodyc(33 - body.body list->vel(l, 0);
rc-3,bodyc[4] - body.body-list->valt1.l);
rc->bodyc(j3 - body.body~list->.sl(l,2),
cc->bodyc(G1 - body.body~list->va1(2,0):
rc->bodyc[7) - body.body-list->val(2,I),
rc->bodyc(S3 - body.body list->val (2.2):
rc--Jbodyelt) - body.body~list->val(3,0):
rc->bodyc[10j - body.body limt-ý-val43. 1):
rc->bodyc(1l1 - body.body~list-"wel(3,21;
re-),bodye 1212 - body.bodylist->vsl 44.0):
rc->bodyc(231 - body~body ilst-)-wal(4. 1):
rc->bodyc[24j - body.body~list->valf4,2);
rc->bodye(1S) - body.body-liat-)-val(,01:
rc->bodyc 1161 - body.bodyLst->wsl (S.);
rc->bodyc[171 - body.body list->vel (5.2):
Cc->bodye(l3j - body~body i~st-3.wsl (6.0):
re->*odyc~l9I - body.body 1ist->ysl (6.1);
rc->bodycl20] - body.body-jist->wel(6,2):

//prints out body coordinates
printf ("body center 13f , %3(, 03f %n".rc->bodycI01.rc-)ýbodyc(l1,

re->bodyc423 4:
printf ("body pt 1 13f, %3f, 13f \n",rc->bodyc13),rc->bodyel4l.

rc->bodyc IS))
printf ("body pt 2 13f, 13f, %3f \n",rc->bodyc(63,rc->bodyc[1,3

rc->bodyc(OS):
printf ("body pt 3 13f. %3f, 13f \n".re->bodyctl3.rc-),bodyc[10J.

vc->bodyc(12Di)
printi ("body pt 4 13f, %3f, 13f \n".rc->-bodyctl~l,rc->bodyc[23I,

rc->bodyc 414)):
printf ("body pt 5 %3f, %3f. 13f \n".rc->bodycllS).rc->bodyctIE),

rc->bodyc(17 3):
printf ("body pt 4 13f. 13f. 13f \n~n",rc->bodyc(ISJ~rc->bodycil33.

rc-1,bodyc 4203):

IIjoint one le" coordinates: 101-x 111-y 12)-t
rc->leglc (03 - legi 1ink0->HNmatrix->va1 (0.3);
rc->1@92c[O) - leg2.link0->H-mmtrix-)>vsl(0,3):
rc->1*93c[OJ - leg3.1ink0->MHmstrim->va1(0.3):
rc->1eg4cIOI - leg4.link0->N mmtrix->val (0. 34;

106

rc->1.gSej) 10 -lgS.InkG-3UiN=trxi-"val(O, 31;
cc3oe-)1.9ct0 - 1096. link0-" Itfix-"a1 (0, 31
rc->1.glc (1) - 1.91. lnkO-)-Vintgia-)qa (1. 31 :
wc-),1eg2cjl1 - leg2. linkO-3-NmtrIu-"&l l. 1 ;)
re-0leg3c 1) - 2e93. 1inkO->N metrixa-sl 41.3);
rc->1094c (1) - leV4 . li kO-ý-CUiatzix-"ys1 (1, 3):
rc->le9Sc 111 legS. link*-2)3 mtuis->.al (1.3)
rc-'>1eq6cj 111- .9. l~nkG->flitriz-ysal (2, 3):

re->leglc 121 -legi. lInk0->R mtrix->.aI(2.3):
re->1.92ct2) - 1.2.lInkl->NUustviz->,al(2,31;
re-1.eg3c (21 - 1e3.link1->N _mtrix-)ova1(2.3)3
re-),l94c 121 -l*94.linkl->Ifmttix->val(2,3) r
rc->1.g~c[21 -leqS.limkl-)flintriz->vel(2,3):
ce->1.96c (21 le9G. linkl->i mtrix-q~l (2,3);

// joint 2 x~y~s coordinates 131mx 143-y 15)-a
reý->l.91c(31 - le1. link I->Nmt rix-wsa1 (0, 3);
rc->leg2c 13] - 1992.linkl->N mtrix->va1(0.3);
rc->1eg3cf3J - l.93.1ink1->ýNmtrix->val(0,3):
rc->1og4c[31 - le94.liuk1->imstzis-"wa1(0,3):
rc->1g5c131 - le95.1inkl->N -mstriz->val(0,3);
re->1.g~cI31 - 1e94.linkI->Hu- Atwiz->w1(0,3);
re->leglci41 - 1e9l.linkI->i hstriz-).1(1,3):
rc->1*92c 14) - 1.,2. ii kI-)fl mtviz-)vsal (1,31);
rc->1993c141 - 2e93. linkI->Cmntriz->vm(U, 3) ;
rc->1994c141 - lsg4.linkI->Rmstrix->va1(l,3);
rc->1*g5c414 - 1*95.linkl->Ki -trix->va1(1,3).
rc->1*g6C(4) - l.9E.lSnk1->finmtrix-.ysl(1,3);

rc->1.glc IS) - legI. 1inkl->f matrix->vs1 (2,3):
rc->1.g2c(51 - leg2.link1-NRmstrix->vs1(2.3);
rc->l.93c (51 - 1eg3. lInkl->U mstrIx->val (2,3):
rc->l.94C (SI - 1.94. linkl->K mtrix->,sl (2.3):
rc->1.9Sc(SI - le9S. linklk->Nmtrix3,-va1(2, 31;
rc->1.96c15) - 1*96. link I->3mst riz->val(2, 3);

// joint motionIlimit flag
ze-)motion limit £ is, 10 -1.91. linkl-Geftt~tioniimitflsg 0:
rc-)uotion limit flag 131 - 1.92. link2->GetiotionLimitrlag 0;
rc->motIon limit flag(G) - 1e93.linkl->GetlfotionLimdtt11s9O:
rc->notion limit flsgIS] - le94.lInkl-)GetfltionLimitTIsg0;
rc-).otion limit flag 1121 - 1.95. iinkl-4eftt~tionLlaitflag t:
rc-)'motion limit flag 1131 - l.9G.linkl->GetmotiooLimitrllsg0;

// joint 3 zyx coordinates (6)-n 111-y [$1-a
rc-ý-leglc(G) le91.lInk2->RfMstriz->vs1(0,3js
cc->leg2c 161 leg2.link2--Hintriz->vslf0,3);
rc->1093c 161 -l~g3 .link2->N intriz->val(0,3):
rc-3-.g4c161 leq4.link2->HN-xtviz->vm1(0,3):
re->2995e161 1eq5.liahk2->N-matrIx->al(0,3).
cc->leG~clg) I- l~4lInk2->w-=tzix->vsl(0,3j;

rc->1e91c171 1*91. lInk2-,H-mstri*-.al (1, 3)
rc-D~1eg2c Ii) 1eg2.linh2-)-N atrix-3-valfl.3),
rc->leg3c (7) - 1.3. liahk2-fl mstriu-.sl (1, 3):
rc->le94e (7) - 1.4. link2-)fl matrix->.s1 (1,3):
rc->l*95c17) - egS.link2->RNsertix-.al(l,3),
rc-)leg~eI7) - e9G.1ink2->NUmatvix->valfU3):

rc->leglcI31 - 1.91.link2->N-mstriz->.al(2,3):
rc->1*g2e (61 leq2 . ink2-3-R matrix->al (2,3):
rc->leg3c (SI le93. link2->N m~tgix--val (2,3):
rc->1094CIS)1 i 4. link2-)-Ht rix->val 12, 3).

107

Risen&%&" C 4

/1joint 3 notice liini flag
xc--soIon-iouAiitJ1a9 11) - 1.91. link2->GetNotionLmidtirlag 0:
wc-Xvotion limit -flaqil) - 1.92. link2->etiNotionL4.fitrlag I);
rc->wotiom limit tlg(I-e3 . link2-Geftt~tionbin~itrlag 0:

tc-)mtioe1aitfa,(lJ - .94.Lnk2-XGetNotionLS~mitrlag 0:
tc-)ceti Inlimit flegilf) * lgS.%1ink2-X1*tNotionL4-mtitF(1ag

// joint 4 K"z coordinates 191-z 110)-y 111)-s
rc->leglcIS) - lel.lintk3->R mtrix-)-vse1(0,3):
wC-'%Isg2cJ9 ISO- .. lInfk3->Hmstrix-.al (0, 3):
rc->legjc IS) 1*93. IM3-31emstriz-ý-.al (0, 3):
rc->ledc (9J - 1.4. Infk3->N mtriA-val (0.3):
Cc-l,,egSc(91 l eg$.lih3)I0ati- ,alG3) ;
tc->legfc 19) legS. 1iak3-UNmatria->wal (0, 3):

rc->1.91cI101 - 1eq.U1lnk3->-mstrik->vam1(.31:
rc-:ý19g2c(10) - 1*92. link3-)o(MaMtria->vaI (1, 3):;
rc->leg3c(lOI * eq3.Iink3-"IIvmtzix->vs1(1,3).
re-3-1og4c(101 - le4.link3->x-strin.>Yal(1i,3):
rc->legScJ2Ol -"S l0i.nfk3->PHMtrLx->Yal (1, 3) 1

rC-)l0lIcll3l - Ig.nS)s tit>e 2)
Zc-)1eq20 Ill) - 1.92. link3->x-ewtrix->va1 (2,3):
cc->1eg3cI2lJ - leg3.1Ink3->1Lsatrix->wal(2,3).
re-)legdc (111 - legI .I lk3-),HmatrLx->va1(2,3);
re->I"gSctll) - 1eg.1ift3->N-sstrix->va12. 3):
rc-)eG~c till - legS .link3-1S Nmetrim->va1(2,3):

IIjoint 3 not ion limitf log
rc->uotion i~mit flag (21 - 1.91. Uak3-X.Gt~otivnLimitVFag 0:
rc->motion limit flaq(3) - 1.92. livk3->Get~otionLiuitrlsg 0:
xc-)nmotion-limit flagi~l - 1e93.link3-)GetMotionLinitrlag0:
rc-)-motion limit flag 1111I - leg . link3-Q4et~otionLiaitFlag 0:
rc->motiofl limit flag 1141 - leg5. lintk3->Get14otionLimtrlag 0;
zc->wwtiov limit flagil7) - legS .link3-X1*t~otionbimitrlsg 0:

1/test for supporting les" and adjusting legauopport f lag
if (tabs (rc->Ilegc (111) >- POUWDbgLvA?ION) 1.g91.SetLegoupportrlsqg(1):
else 1091.StLeglupportriag (0):
if 4f~bs(rc->Ieg2c121)) >- OROWWEIZVATION) Ieg2.SetZLegSvpportrla9M;)
*I** 1eg2.SktLaSupportFl59(O);
if (tabs (rc->1g3c~l1l) >- 0mOWIDEI*VATIONe l*3.SetLegSupportrlsqM:
*Ise 1eg3. SetLegsopportrIsq (0):
if (fasbare->leg~c(IlI)),- GROONDELVATION) leg4.SetLoq~upportrlaq(1):
else legI.Soti.9Oupportrlaq(0):
if (tabs (re->leg~c (l2i) >- 6RDUNQSLMVT!W) le"S. SetLegSupportTfag (1) :
elas eS q.SetIOeglupportrlag (0):
it ifebafte-)-leScill)) >- 0G0IMD1ZVAflOS) legG. SetLega3upportrlag (1) :
else legf. SetLegSupportrlag (0):

IIplaces leg aupport flag into re
rc->legaupport -flaqIO) - 1"I1 -GetLeq3upportlla9O:
rc-),leg support flagt 1) w 1.92 .OetLeglupportrlag 0:
rc->Ilo auprt flag (21 - 1eg3 .GetLegSupportrlag (I:

"r->Ieg aupport flag(S) - 1*gI.0otLegSupporttlagf0:
,e->I1qgaupportftLagI4I 1* leSGeiLeg~upportTlag():
rc->eg aupport flagIS) w *qlgS.Oet~oeSupportrlag 0:

./prints body and 1.9 x73 coordinates

108

int row, col;

for (row -1; rov<S; zow*4*

for teal -3; col>O; col--)
prinflt-("6.4f l,rc->leglc[3 *row - coll):

print!l t),
for (col - 3: col>O; col--)

printft"16.4f ",rc->l~g2cj3 * row - call).*
print! tn"):

printf!("\n')
print ("leg3 1eg4\nal;
for (tow - 1; row(S; row++)

for (col - 3:col>O: col--I
printff'%6.4f ¶rac->eq3c(3 *row - call);

printf(" *1;
for (col - 3: col"O; col--I
printffa%6.4f ",ra->Ieg4c13 * row - coll):

print! C"\n"I:

print! (n"):
print! (wle5 leq6\n):
for (row - 1: rov<S; row++)

for (col - 3; col>O: col--)
print! ("6.4f *.rc-leg*9ct3 * row - call):

printf(w);
for (col - 3; col>O: col--)
printft*16.4f ".rc->leg6cI3 *row - call):

printflt\nl):

returni *rC:

IIFUNCTION: File-Us*
IIP1APOSZ: read* desired leg changes from a file
IIINPUT: reads from file:

// format: log#, deltal. delta?. delta3
IIOUTPUT: calculate* now log/linkc coordinates

PassingItems File -ve(rILZ *ifp,Aquarobaotfody &body,AquaLeqg legi.
Aquebeg &le92,AqvaLeq &leg3, AquaLeg &1.94, Aqualieg 61*95,
AqusLeg 4legS)

PassingItems -pass:
pass - new Passing-Items;
facanf(ifp."%d %If $if %If %i if W %fa.&pa9a->body,Spass-).de~ll

£pass->del2, £pasa->del3, apass->d014. papas->delS, apass->del6);
if (pass->iegnum 'C 9)

body.Movelncrelmntal (pasa->dell,paaa->del2,pass->dei3,pasa->del4,
pass->delS~pass->del5);

fscanf(ifp, hd %if %If hif",5pess-flIegnum,5pass->dell,£pass->del2,
&pass->de13);

legl.Imoveincremental(body,pass->dell~pssa->del2,paas->del3);
fscant(ifp, %d %1f %if hlt*,Ipass->Ieguum,£pmass-dell.£pass-ý,dei2.

&pass->del3);

109

le±2Moies. ratna (bd. paae->d*12. paaa->-del2, pa-d1)

&passa->de13),

eg3 .Noeltncgefital (body, pasa->d.11. poaa->d.12, p"Du-~d.13);
fsca~fif Cp, %d %f %If ~f pa-1gwL pm-d1.&~a~e2

&pass-'6e3) .
Ieq4 .MoweZncremantal body. pasa->dell, paa->d.12, paa->del3);

iucantfifp,"%d %ft %ftfpa->ena&aa> 1.pe-d12

1I9. HaMve Increumenta I (body, passa->doll,pass--'del 2, posa--de 13):
facmnf (ifp."%d %ft Ut ft es-en , pa-el.pe->1

£p~ass->del3);
leq6.Movelncraeunta1 (body. paga->dell,pasa->d.12,paaa->de13);

fscant (ifp. %d %ft %Itff,£aa>.ra,~amdl.aee>e2
Lpeus-ý-de13);

if (Pass->leqnmWt 0)
I pass-)deal 0.0;

pass->d%12 -0.0;

pase->d*13 -0.0;

return *pass;

FIf P11.MW ItansferToGait
IIPtIOSE: places the body center and leg Cartesain coordinates

If in Ak Next Motion structure for gait algoritht on~e

mext-Motion ?ranhf~er~oGait Ineturn Coordinates &coord. Aquarobotbody Sbodyl

N*xt motion *tam:
temp - now H*xtt Motion;

tamp->body canter-coordl3) - coord.bodycl03: /jx
teuW->body_2canter eoordt4) - coord.bodyc 11); f/y
t~w~p-)body~center~coord(Sj - coord.bodyc (23: //z

temp~-'foot~lcoordI03 - coord.loglcI9I: //x
tevV->jfoctjlcoord(lj - coord.leglc(lOI; /ly
teW~->ftootjlcoordI2) - coord.1091cIll); //Z

teep-)foot_2coordf0J - coord..log2cf9l; f//x
teap->foot2_Coord(1) - coord.log2cilOJ; 1/y
tewqV->foot_2coordI2J - eoord.leg2cgill; //2

teW->foot_3coordI0] - coord.1*g3cj9); //x
tesip->foot_3 coord~l) - coord.leg3ctlO); 1/y
temV->foot_3coordj2) - coord.log3cilij; 1f!

temp-)-foot_4coordj0J - coord.leg4c(91; //x
tevp->foot_4_coordj2) - coord.1994c[10]; /ly
tewpV->foot_4coord[2j coord.log4e (113; //I

tesp-),foot_5Coordf03 - coord.le95cI9); //a
temip->toot_5Coordtl) - coard.leg5ctiOI; ffy
tWWp>foot_5_cord(2J - cocrd.le;3c(IUl: //2

tMi-:PfootScoordjol - coord.1egficI9]: fix
t~tfp->footGtoord(13 - coord.1*96c(20j: //y
tesW->foot_6coordj2) - coord.leg~cil1I: 1/2

ficurrant body elevation

110

temp->body cent:: cocrd(l) 1 body. tmatrix->v:1(2, 0);p

tamp-:)bodyc~thter -coard(03 -asin(body.H-omtrix-"vm1(1,0)I
cog (tOp->body_ center coord(IlJ));

IIcurrent body roll
teup->body center coord(23-eein (boy.H matrix->val(2, l)

coo Itemp-);body~conter-coordtlj)).

IIjoint limit flag
for Unt i-0; iL<7; i++1

teW->Joint limi~t flagli) - coord-motion_limit_flag(L);

/I leg contect..flag
for (int J-C: J<7; J++)

teiW->leg_ contact flagiji - coord.leg support flag[L]:

return *temp:

II FMI7ON:9ait algorithm
//PURPOSE: to provide a temporary gait function for
// testing purposes

Next-Notion GaitAlgorithm (NextNotion &in)

Next Not ion *teffq:
tomp - new Next Notion:

for lint i - 0: i<E: i++)
tesIp->bodymotionfiI - 0.0;

for (i -0; i<3: 1+4)
teuw->leqlmotionjij - 0.0:
temp->1*g2motion(i) - 0.0;
teirp->1eg3motion(iJ - 0.0:
temp->leg4motiork(i) - 0.0;
tewp->legsmotionti) - 0.0:
teup->leg6motiontil - 0.0:

/1movement desired

return *tewp:

/1FILENAME: Link.ff
IIPURPOSE: Declarations for class Link 4

IfAUTHOR: S i Davidson
IIDATE: 18 Sept 92
IICOMMIENTS- Definition of Link class

#ifndef H LINK
#define H LINK

#include <stdio.h>
#include (mAth.h>
*inclufe "Rigidtody.H'
#include -Matriz~y H-

class Link: public Rigidbody

private:

int motion lim~it flag;
double link- length;
double twiat angle:
double inboard joint angle;
double inboard joint displeacment:
double inboard link:
double min joint angle; I rotary link
double ma: joint angle; IIrotary link

public:

Link (mnt mif, double 11. double ta, double ij., double ijd, double il,
double mm -ja. double ama-ja I

-Link 0j;

void Htotato(matri*, double):
void RotateLink(uAtrix', double):

int GetMotionLim~itrlag() (return motion limit flag:)
double GetLinkL~ngth(i freturn linkjanwgth:l
double GetTvistAziglo(0 (return twiatahgqle;1
double GetlnboardJointAsbgle) 0(return Inboard joint angle:)
double Gotlnboard~ointDisplacemment 0) freturn inboard-joint displacement:)
double GetlnboardLink() freturn inboard link:)
double GetHinJointAngl*(0 return minm joint angle:)
double GetuaxiointAngle(0(return maxzjointasngl*:)

void Set~otionLinitrlagcmnt a) fmotionjlimitjflag - a;)
void SetLinkLength (double a) (link length - a:)
void SetlvistAngle(double a) (twiat angle - &:I
void SetlnbosrdjointAngle(doible a) linboard joint angle - a;)
void Sot Inboerd~ointDisplacement (double a) I inboard Joint displacemment -a:)
void SatInboardLink (double a) (inboard link-a)
void SetMinJointAnglefdouble a) 1mm ~jointangle - a:)
void SetMaxJointAnglefdouble a) mmax joint angle - a:)

*endi f

112

Link.C

9/ *&.........fltaer *.a....,t.**et~t**Stet*ftSttet~tot

// FILENANE: Link.C
/ PURPOSet: Xmplmntation of class Link
// CONTAINS: UpdateAJstriz ()
// Rotate (double angle)
// Rotetelink (double angle)
// AUTHOR: S L Davidson
/1 DATE: 10Sept 92
// .*etetet..*.***teet~t.**.***,..**.*tt~tetetoeteett***

#include "Link.N"

const int True - 1;
cones int False - o:

ii **.*...*.....*........*.ata...flefl..a**...tttttt

SFNCTION: Link
// PURPOSE: Constructor for Link
// RETURNS: a link with values

Link::Link (int sef, double 11, double to, double ija, double ijd, double il,

double minj-a, double max-is

motion limit flag - mlf;
link-length - 11;
twist angle - to:
inboard joint angle - ija:
inboard joint displacement - ijd:
inboard link - ii:
mmn joint angle - min ja;
maxJointangle " max-j:

H mstrix->UpdateTHatrix(ijata,1l.ijd);

.I t....*...*.t..**.....~..l..

// FUNCTION: -Link
// PURPOSE: destructor for Link class

.... 0.......*

Link: :-Linkf)

delete node list;

11 FUNCTION: Rotat
// PURPOSE: rotates a Link by changing the T Matrix

// by the inboard joint angle desired
// RETUNNS: an updated T matrix within the Link object
// * ** *...*.........

void Link::Rotste (matrix 'mat, double angle)

Sot Inbostdointhnqle (tangle);

7_matrix->UpdateTMatriz(GetlnboardiointhAngle().GetTwistngleo,
GetLinkLenqth(),GetlnboardJointDisplscment 0):

113

Liftk .2

// the "mat" is the inboard link's 7 matrix (or the body's
// ? matrix for the inboard joint

.H_matrix - *mat * *'-matrix;

4. a . .. a a..a *e4 saetat .. teaen.eta..... a. a. atee.ee

/ IUNCTION: RotateLink
II PURPOSE: determines if the rotation is within physical
II joint constraints. If outside the workspace the mwn
// or max limit applicable is used.

/ : this function calls the Rotate function
// RETURNS: sets range of inboard joint angle if desired is
// outside physical constraints
II teeste .teette~eeeeaeteeet tttetteaaet..t..e~etettteettte.~e

void Link: :RotateLink(mstrix *mat, double angle)

double tester: // te1porary variable
tester - GetMinJointAngle();
if (angle < tester)

I angle - tester:
SetMotionLiitflag (I):

tester - Get~axJointAngle(0;
if (angle > tester)

I angle - tester:
SetmotionLimitrlag (1):

Rotate(mat, angle):

11

II

114

S !_i.q aa~i ai!as an a na s a! ! ! !

PiIURPOSE: Declarationn for clasm LinkO

1/AUTflOR: S L Davidmon
IfDATF.: 17 Sept 92
IiCOMK1EWTS

*ifndef 14 LIN?(O
#define H_-LIN1(O

fincludki "Link.1I"

clais LinkcO :public Link

privalte:

public:

LinkO();

#ondif

115

// ILWM LinkO.C
IIP13P053: Declarations for class LiahO

IIAUUMO: 8 L Davidson
UDAYZ: 11 Sept 92

linclude "LinkO.N"

Link0--LinkOO() Link (0, 31.5, 0.0, 0.0, 0.0, -1.0,
-360.0, 360.0)

nods list->'vs1 403) -I.; node list-)ysl (1.3) -1.:
nods Ujst->vs1(2,O) -37.5; node 1ist->va1E2,31 I .,

IN

/1 ILZMNM: Linkl.N
iiPURPOSS: Declarations for class LinkO

IIAUThOR: S L Davidsoni
/1DATZ: 17 Sept 92

*itndef NHLINKl

*deftine H-LIUK

#include "Link.n*

class Linki : public Link

privet*:

public:
Linki 0:

1;

Oandif

117

U~atl .C1

// ILMO: Linkl.C
UPU3POSZ: Declarations for Class Links

IIAUTUOR:- S L Davidson
//DATZ: 17 Sept 92

*include *Linkl.N"

Limkl::Linklf) : Link (0. 20.0, -90.0, 66.4, 0.0, 0,-204.6,73.4)

node list - new ustrix(4.4.0.0);
nod.Ilst->val (0.3) -1.:
node 1ist--val (1.3) -I.;
node list->'va1(2,0) -20.0:

node list-)val(2,3) I .;

T matrix -new mstrix(4. 4,0.0):

118

Liak2 .ol

II FILENE: Link2.H
1/ PURPOSE. Declarations for clan. Link*
//

/ AUTHOR*: S L Davidson
// DATE: 17 Sept 92
I/ CCMN7S:

*ifndef H LINK2
0def ine 14LINK2

#include "Link.H"

class Link2 : public Link

II

private.

public:
Link2 0:

I:

tendif

119

SIIIIIIIIIIIII II

LLokl .C1

// ILgMNAI:]Link2.C
/1 URPOSE: Declarations for class LinkO

/1AUTNWW: S L Davidson
/1DAMf 11 Sept 92
//COMUNPTS:

include "Link2.n

Llnk2,:Link2() : Link (0, 50.0, 0.0, -156.4, 0.0, 1.0, -156.4. 23.6)

node-liet - new uatrix(4,4,0.0);
node list->v~l(O,3) -I.; node list->valf1,3) -1.:
node 1ist-),va1(2,O2 -SO.; node_list-.vval(2,3) I .:

Teatxix - new .intrix(4,4.0.O):

120

iiFZUW3AIU: Limk3. N
// PMBOS: Declaration# felt CIac. LinkO

//AVTflWo S L Davidson
D/ AM 17 Sept 92

*ifadtf N LIMK3
#defin~e iNKS

*inclaade "Link.Nf"

cl$Ss Link3 : public Link

private:

public:
Link3O,;

Sendif

121

IM' flM: Link3.C
// UflPOE: Declarations for class LinkS

1/AUTO=: S i Dayida..
IIDAY3: 17 Sept 92

Olaclude "Link3.N3

LLflk3::Link3 0 Link (0, 100.0. 0.0.0.0. 0.0, 2.0. -360.0,360.0)

node-list - now mtzial4,4,O.O);
nod,. 1Iat->vml(O.3) -1.: node list->valgl.3) -i.;
node-list-3ma1(2,0) -100.: nod*_l9.at-)-yal(2.3) I .:

?intrix -now matrix(4.4.0.O1:

122

I FLWNE: Natrixuy.H
// PURPOSE: To provide for a matrix class to accomplish

B/sMW necessary robotic and kineimatic needs.

// AUTHOR: S L Davidson
// DATE: 29 Oct 92
1/ COMMENTS: DfMatrix, Homogeneous Transform, and

!/ TransformList are included
// petelsreeeeeeeltteeseeeeetee

*ifndef H KATRIX
*define H MATRIX

const double deg to rad- .01143329251,94329S;

class matrix

struct matrep

double tom;
int r, c, n;

public:
matrix(const matrix& x): // copy initializer
-matrix). II class destructor
matrix(): // class constructor
matrix(int. int, double }: // class constructor
matrix operator-(const matrix& rval):
matrix operotor4(const matrixg rval):
matrix operator' (const matrix& rval;
matrix operator' (double)•
double & val(int row, mnt collconst: dl spot value
void print); ft prints matriz

int rows0) const (return p->r.); // returns number of rows
int cola(0 const (return p->c;); // returns nuimber of columns

II Craig method used
matrix 9 HoffoaneousTransform(double,double,double,double,double,double):
matrix S DKMatrix(double, double, double,double. double, double);
matrix & UpdateaTMtrix(double, double, double, double):
matrix S ?ransformList(matrixi, matrix&);

*endif

123

,,, ,, , , i nil

Rat ii•,yC1

/I F'X.Nn.NF.: Hatrixmy.C
/ PURrOSF: Implementation of HatrixlMy clans

/ CONTAINS- functions which operate upon matrix
/1 type variables
1/ AUTHOR: S L Davidson
1/ DATE: 20 Feb 93

finclude <;tdio.h>
Oinclude <ntdllb.h>

#include <mtring.h>
#include <mrsth.h>
#include "HatriuMy.H"
#include Aqu aLeg.H"

/F FUNCTION: matrix()
// PURPOSE: constructor of a matrix type
I/ : createn a 4 by 4 matrix (by default)
// RETURNS: a matrix with 0.0 in all spaces

matrix::mntrix()

p - new mAtrep: // pointer to matrix structure
p->r - 4: II r is ,oumber of rows
p->c - 4: // c is number of columns
p->m - new double 1[4); // m is the value array

/] m consists of a 4 pointer array
int x:
for (x -0; x<4: x+4)

p->mlx} - new double[41); I/ produces an array of four
.1 items per array pointer

P->n 1:

int •
for (int i-0; 1<4: i++)

for (J-0; J<4; J4+)
p->mliJlj) - 0.0; // ea-h matrix is given the initial

// valu! of 0.0

// FUNJCTION: matrix(row, col, in1tval)
// PURPOSE: constructor of a matrix type
// •creates a I by I matrix by default In which all the
// item values are 0.0 or matrix size and values
II indicated
II RETUANS: a matrix of saiedasired with initial values desired

matrix::matrix(int rows -1, ant col - 1. double initval - 0.)

p - new mat rep; /I pointer to matrix structure
p->r - rows: ;/ r Is number of rows
P->c - col; / c is number of columns
r=>m - now double "[rowsI; II produces the desired number

II of rows

for (x -0: x<row"; x44)
,->mjx] - new doubleIcoll; II each row in given an array equal

II to the number of columns desired
p.. .- 1

124

Natzity. €

int -
for lint i-C: i<rovm; 1++)

for (J-0; J<col; J++)
p->m(i] (j) - initval; // initialixes each value to

// desired initval

/ / ***....ttae.ete.*...e**te...*...*....*e.......e.*ee...e....*e.*ee

// FUNCTION: matriximatrixl)
// PURPOSE: deep copy constructor of the matrix type
/R RETURNS: a couplete identical copy of the matrix
// *etn.....e...e....e...ea.e....e........nee...te*e..eoteteeeoe.et.*

matrix: :matrix(const matrix& x)
X
K.p->nt++;

p - x.p:

/ / ***e*eet*t*~t*******t*****S*e~eee*eet**eoe*e***etf***f*tQeeeee**e

I/ rUNCTION: operator-
// PURPOSE: operator overload function of the equals sign
//I produces another matrix which points to the original
// RETURNS: copy of matrix is made in the other one
// .*t*** *ettoet...* t* ** **e e..***

matrix matrix::operator-(const matrix& rval)
I

if (--p->n -- 0)
I
for lint x-0; x<rows(); x++)

delete p->mlx)l;
delete p->m;
delete p:

rval.p->n++;
p - rval.p:
return *this;

II

// FUNCTION: -matrix (
// PURPOSE: destructor of a matrix typeI / **fltttte***.****...t...*....**......*...tt*.~ttt.*.*..tett..bttt

matrix: :-matrix()
I
if (--p->n -- 0)

for lint x-0; x<rows(); x++) delete p->m(x]:
delete p->m:
delete p:

// FUNCTION: vallrow. col)
II PURPOSE: finds the value in a matrix given row and colusm

SRETURNS: value in spot in desired tow end column
// *t ee***tIe~tte*t t **tt *tttte *t **t*t ..t.*...*et....*s.........*e*t

double & matrix::vallint row, int col) const

125

I! !!!!!!!!!!U!!II!!!! ! !! !! !

IbtrXKy .C 3

return (p->m(row] |coll);

// FUNCTION: operator*
// PURPOSE: operator overload
// : provides multiplication of two matrices
/R RETURNS: the product of two matrices
/1 *.*..*.....*a...........,fl...,.e...*e.****.@.t*.*.***...@eeet*e

matrix matrix: :operator* (const matrix& arg)
I

matrix result (rows (). erg.cols (0.0); // temporary matrix constructed

for (int row-O: rov<rows();row++)
I int col:

for (¢ol-0: col<arq.colsO: col++)

double Bams'.0:
for (tnt i-0; i<cols() i++)

sum +- p->m[row][i] - arg.val(i,col);

result.val(row.col) - sum;

return result;

II *.etea...........*.*le~s *eet.*.fl....s*.*......**

// FUNCTION: operator*(double)
// PURPOSE: operator overload
// ." provides multiplication of a scaler end a matrix

/ RETURNS: the matrix product
/ / s~t***...**..*,.*,**.....**.....e...**fel*..e.*,...e....*t.e..

matrix matrix: :operstor*idouble a)

matrix result(rows(),cols(0,0.0); // temporary matrix constructed

for (int i-0; i<rowsO:) i++)

for (int J-0; J<cols(): J+4)
I double one;

one - reeult.valfii) a;
result.valtij) - ana:

return result;

// FUNCTION: operator+

// PURPOSE: operator overload
// .: provides addition of two matrices

// RETURNS: the matrix sum/1 *.e.ee.eee....**.e.se.*e.**...*ee*fl...,eee*..*.***.eee*fl

matrix matrix::operator+iconst matrix& erg)

matrix sumtrove),cols(O.IO.0; // temporary matrix constructed

for (int i-0: i<rowaj), i*+)

I int J;

for (J-0: J<coleO; J+*)

126

S.. i i m l m i l I Iii i m m i i i

t~kim.p-7-mf 1 i -~i i 4 a rg V3I (i, J)

return cumn;

ft UNCTIGH: print(0

/1PLM1POS!F: prints the values of the matrir
/1RMTYRNS: a print out to the screen of the matrix contents

void matrix::print()

for (mt rov-0; row<rowsfl; row++)

int col:
for (col.0; col(colsO); col++)
printf("%6.6f ", p->mjrowj (colj);

printf (\n")

F/ UNCTION~: Homogeneous Transform
/1PUPPOS): constructs a transformation matrix

I/ RETUR.NS: a matrix

matrix & matrix: : Homogenerous~rans form (double azimuth~double elevation,
double roll1, double x,doubl* y. double t)

double ap.41 - sintatimuth):
double cpal - cos(stimuth);
double nth - sinlelevation):
double cth - coa(elevation):
double aphl - sin(rolI):
double ephl - com(roll);
va1(0,0) -(epsi * cth):
val(0,1l1 - ((cpai * nth I aphi) Ispapi * cphi)l;
val(0,2) - ((cpmi * sth * phi) * apsi * sphi)):
va) (0,3) - x
val(1,0) - (spak * cth):
valfl,l) - ((cpal c phi) 4 (apei oth * phie):,
valtl,2) - ((spal * th * cphi) 1c(psi * phi)):
va1(1,3) - Y
vsl(2,0) - (-ath):
val(2,l) - (eth 6 * h)

val(2,2) - (cth *cphi);
val(2,3) - a
va1(3,0) - 0.0:
va1(3,1) - 0.0:
val(3,2) - 0.0:
val (3, 3) - 1.0:

return *this;

/I FUNCTIO0N: DII MatriP
IfPUPPOSE: constructs a DII matrix

127

Hat rixty.C 5

// RETURNS: a matrix

matrix L ",t.rix: :DHMatrix (double cosrotate, double Binrotate,
double costwist, double aintwist, double length,
double translate)

val(O.0) cosrotate:
val(0,1) -- * ainrotate;
vyl(0,2) 0.0:
val(0,3) length;
val(1,0) ianrotate * comtwist;
val(l,l) costwiat * coarotate:
val(l,2) - -1 * sintwist;
val(1,3) translate -1 * intvist;
val(2,0) - sintwist * sinrotate;
vl(2,1) - sintwist * cosrotate;
* vs.1*2,2) - costwist:
val(2,3) - translate * costwist;
val(3,3) - 1.0;

return *this;

// FUNCTION: Update T Matrix
// PURPOSE: constructs a transformation matrix
// : calls the DH matrix function
/R PETURNS: a matrix

matrix & metrix::UpdateTMatrix(double rotate angle, double twist angle,
double length, double translation)

rotateangle - rotate angle * degto_rad;
twistangle - twist angle * degto rad:
double cosrotate - cos(rotateangle);
double sinrotate - sin(rotate-angle):
double costwist - cos(twist angle):
double aintwist - ain~ttist_angle);

DHMatrix(cosrotate, sinrotate, costwist, sintwist, length,translation):

return *this:

// FUNCTION: Transform List
// PURPOSE: transfers coordinates to new position based upon H-matrix
II RETURNS: a transformed node list as a matrix

mat•=ix & matrix::TransformList (matrix SH matrix, matrix 6b)

matrix temp(4,1.0.0): II temporary matrix constructed

for (int i - 0: i<b.rows(): i*+)

// transposei the node list so multiplication can be accomplished
temp.val (0,0) - b.val (i,O) 0
temp.val(l,01 - b.val(i,l);
temp.val(2,0) - b.val(i,2);
temp.val(3,0) b.val(i,3):

128

mattr ix middle - H-ma~trix Itemnp;

/1tran~po~ee the node_ list back to origrinal form
val(i,O) middle.val(0,0):
viil(i,l) - ciddle.val(1,O);
val(i,2) - ciddle~val(2,O);
val(i,3) -middle.val(3,O):

return *thl5:

129

iI / imunwN: Ri1gidSody.11
/1PURPOSE: construct the guperelseq for robot SYStins

/1AuTWOR! S L D*widiOfi
VI PAY! is sept 52

*ifndf HXGODO
#def ine AGIUO

Sinclede MHatri%9Y .H

const double gravity -32.2185;

class RkigidDmdy

publiC:
matrix -node list;
matrix 'N ma7trix ,?uti

RkigidSody 0;
-RigidlOdYo.

*.ndif

130

// 711*MmA: Rigidlody.C
/ PIUPOSI: Implmntation of class Rigidsody
IC C•NTAINS: superclass of robot eyst--

/: commi *slots initisted
// AUTHOR: S L Davidson
/ DATS: i0 Feb 93

/ / *@@....*..*4*..**....et.*.....t..4...t*e. *.*...e *.a*.*

#include "Rigifdody.H"

// FUNCTION: Rigidbody()
// PURPOSE: constructor of Rigid Body class
// RETURNS: produced Rigid body clams

Rigidbody: :Rigidoody()

node list -new Atrix(4,4,0O.);
m mitrix - nov mstrix(4,4,0.0);
7_matrix - nov matriz(4.4,0.0;

/-

FUNr"•CTIO: -Ritgidbo<dyO

// PURPOSE: destructor of the clamsIItee *.*a..oes.*te~eettee~ee~t..*...e...*.e....efl**.......

Rigidbody: :-RigidDd()

// delete node list;
II delete KWmarix

131

APPENDIX C - CLOS SCRIPT AND GRAPHICS

typescript

Script started on Wed Mar 10 08:35:48 1993
hydrat cl
Allegro CL 4.1 (SPARC; R11 (7/8/92 9:07)

;; Copyright Franz Inc., Berkeley, CA, USA
; Unpublished. All rights reserved under the copyright laws
; of the United States.

;; Restricted Rights Legend

;; Use, duplication, and disclosure by the Government are subject to
;: restrictions of Restricted Rights for Comimercial Software developed

at private expense as specified in DOD FAR 52.227-7013 (c) (1) (ii).
;; Optimization settings: safety 1, space 1, speed 1, debug 2

For a complete description of all compiler switches given the current
;: optimization settings evaluate (EXPLAIN-COMPILER-SETTINGS).
USER(M): (load "load-files.cl")

Loading /n/aquarius/work/mcghee/aquarobot/load-fil.es.cl.
Loading /n/aquarius/work/mcghee/aquarobot/camera.cl.
L.oading /n/aquarius/work/mcghee/aquarobot/link.cl.

* Loading /n/aquarius/work/mcghee/aquarobot/rigid-body.cl.
* l,oading /n/aquarius/work/mcghee/aquarobot/robot-kinematics.cl.

L Toading fn/squarius/work/mcghee/aqtuarobot/aqua.cl.
T:oAdtng /n/aquarius/work/mcghee/aquarobot/aqua-leg.cl.

* Loading /n/aquariuslwork/mcghee/aquarobot/aqua-link.cl.
T
USFR(2) : (aqua-picture)

USER(3): (setf move-list '((0 0 0 0 0 0) (0 0 0) 98 0 0) (.1 .2 .3) (0 0 0)
(0 0 0) (0 0 OM)
((0 0 0 0 0 0) (0 0 0) (0 0 0) (0.1 0.2 0.3) (0 0 (j (0 0 0) (0 0 0))
USER(4}: (move-incremental aqua-I move-list)
T
USFR(5): (new-picture)
NIL
USYR(6) : (exit)
; killing "Default Window Stream Event Handler"
; killing "XlI event dispatcher"
; killing "Initial Lisp Listener"
; E~xtJng Lisp
hydra% exit
hydrak
script done on Wed Mar 10 08:50:16 1993

132

_ ,.

LI aquarobot

Li aquarobot

133

LIST OF REFERENCES

Akizono, J., et al, "Development on Walking Robot for Underwater
Inspection", Advanced Robotics: 1989, Waldron, K. editor, Springer-
Verlag, Berlin, Heidelberg, 1989, pp. 652-663.

Ammeraal, L., C++ For Programmers, John Wiley & Sons Ltd., West
Sussex, England, 1991.

Anon, Inertial Sensor: General Product Line, Cat. No. 934-2-E 9107-
2-F, Tokimec, Inc., Tokyo, Japan, 1992, Gyrocompass TSG-10, p. 13.

Anon, Nature's Technologv, videotape, British Broadcasting
Corporation, London, England, November 1987.

Bekker, M., Introduction to Terrain-Vehicle Systems, University of
Michigan Press, Ann Arbor, Michigan, 1969.

Booch, G., Object Oriented Design With Applications, The
Benjamin/Cummings Publishing Company, Inc., Menlo Park, California,
1991.

Coplien, J., Advanced C++ Programming Styles and Idioms, AT&T Bell
Telephone Laboratories, Incorporated, Menlo Park, California, 1992.

Craig, J., Introduction to Robotics: Mechanics and Control, Second
Edition, Addison-Wesley Publishing Company, Inc.,Menlo Park,
California, 1989.

de Paula, E. and Nelson, M., "Designing a Class Hierarchy," Proc.
of Technologv of Object-Oriented Languages & Systems International
Conference, Tools USA, Santa Barbra, California, July 29 - August
1, 1991, pp. 203-218.

Eckel, B., Using C++, McGraw-Hill, Inc., Berkeley, California,
1989.

Ferrell, W., and Sheridan, T., "Supervisory Constrol of Remote
Manipulation," IEEE Spectrum, v. 4, No. 10, 1967, pp. 81-88.

Fink, A., object Oriented Programming: An Assessment of Fundamental
Concepts and Design Considerations, Masters Thesis, Naval
Postgraduate School, Monterey, California, March 1992.

Iwasaki, M., et al., "Development of Aquatic Walking Robot for
Underwater Inspection," Report of the Port and Harbour Research
Itu, v. 26, No. 5, December 1987, pp. 393-422.

134

S... ,n n , ,~ m , , , , , • •

Keene, S., Object-Oriented Programming in Common LISP, Addison-
Wesley Publishing Company, Reading, Massachusetts, 1989.

Korson, T. and McGregor, J., "Understanding Object-Oriented
Programming: A Unifying Paradigm," Communications of the ACM, v.
33, No. 9, September 1990, pp. 40-60.

McGhee, R., et al., "An Approach to Computer Coordination of Motion
for Energy-Efficient Walking Machines," Bulletin of Mechanical
Engineering Laboratory, No. 43, Mechanical Engineering Laboratory,
Ibaraki-ken, Japan, 1986, pp. 1-21.

McGhee, R., "Vehicular Legged Locomotion," Advances in Automation
and Robotics, v. 1, JAI Press Inc., Greenwich, Connecticut, 1985,
pp. 259-284.

McGhee, R., "Control Needs In Prosthetics and Orthotics,"
Proceedings of 1977 IEEE Joint Automatic Control Conference, San
Francisco, California, June 1977, pp. 567-573.

McMillan, S., Parallel Real-Time Dynamic Simulation of an
Underwater Legged Robot, Doctorate Proposal, Ohio State University,
Ohio, 24 November 1992.

Pugh, D., An AutoDilot for a Terrain-Adaptive Hexapod Vehicle,
Masters Thesis, The Ohio State University, Columbus, Ohio,
September 1982.

Robison, B., et al., "A Scientific Perspective On the Relative
Merits of Manned and Unmanned Vehicles," Proc. of INTERVENTION/ROV
'92 Conference & Exposition, San Diego, California, June 10 - 12,
1992, pp. 485-489.

Schue, C., Gait Planning for a Hexapod Underwater Walking Machine,
Masters Thesis, Naval Postgraduate School, Monterey, California,
June 1993.

Snyder, A., "Encapsulation and Inheritance In Object-Oriented
Programming Languages", OOPSLA Conference Proceedings, Portland,
Oregon, September 29 - October 2, 1986.

Spong, M. and Vidyasagar, M., Robot Dynamics and Control, John
Wiley & Sons, Inc., New York, New York, 1989.

Steele, G., Common LISP, Digital Equipment Corporation, United
States of America, 1990.

Stefik, M., and Bobrow, D., "Object-Oriented Programming: Themes
and Variations," AIMaazn, Winter 1986, v. 6, No. 4, pp. 40-62.

Stein, J., ed., The Random House College Dictionary, Revised

Edition, Random House, Inc., New York, New York, 1979.

135

Stroustrup, B., The C++ Programming Languaae, 2nd edition, Addison-
Wesley Publishing Company, New York, New York, 1991.

Suzuki, K., and Schue, C., Aquarobot Simulator User's Guide,
Department of Computer Science, Naval Postgraduate School,
Monterey, California, February 1993.

Takahashi, H., private conversation, Naval Postgraduate School,
Monterey, California, January 1993.

Waldron, K., and Song, S., Machines That Walk: The Adaptive
Suspension Vehicle, MIT Press, Cambridge, Massachusetts, 1989.

Waldron, K., and McGhee, R., "The Adaptive Suspension Vehicle,"
IEEE Control Systems Magazine, December 1986, pp. 7-12.

Wegner, P., "Dimensions of Object-Based Language Design," SIGPLAN
Notices, v. 22, No. 12, December 1987, pp. 168-182.

Winston, P. and Horn, B., LISP, Third Edition, Addison-Wesley
Publishing Company, Inc., 1989.

Wu, T., "Benefits of Abstract Superclasses," Journal of Object-
Oriented Programming, v. 3, No. 6, February 1991, pp. 57-61.

136

a

p

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943

4. Prof. Yutaka Kanayama, Code CS/Ka 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

5. Prof. Sehung Kwak, Code CS/Kw 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

6. Prof. Robert B. McGhee, Code CS/Mz 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

7. Prof. Harold A. Titus, Code EC/Ts 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943

8. Mr. Norman Caplan 1
Biological and Critical Systems Division
Engineering Directorate
National Science Foundation
1800 G Street, NW
Washington, DC 20550

9. Mr. Ted G. Davidson 3
380 Rock Cut Road
Walden, NY 12586

137

10. Prof. David E. Orin 1
Department of Electrical Engineering
Ohio State University
2015 Neil Avenue
Columbus, OH 43210

11. Mr. Hidetoshi Takahashi 1
Port and Harbour Research Institute
Ministry of Transport
1-1, 3-Chome, Nagase
Yokosuka, Japan

138

I

